Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process
- URL: http://arxiv.org/abs/2403.04154v2
- Date: Wed, 26 Jun 2024 02:28:07 GMT
- Title: Stabilizing Policy Gradients for Stochastic Differential Equations via Consistency with Perturbation Process
- Authors: Xiangxin Zhou, Liang Wang, Yichi Zhou,
- Abstract summary: We focus on optimizing deep neural networks parameterized differential equations (SDEs)
We propose constraining the SDE to be consistent with its associated perturbation process.
Our framework offers a versatile selection of policy gradient methods to effectively and efficiently train SDEs.
- Score: 11.01014302314467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Considering generating samples with high rewards, we focus on optimizing deep neural networks parameterized stochastic differential equations (SDEs), the advanced generative models with high expressiveness, with policy gradient, the leading algorithm in reinforcement learning. Nevertheless, when applying policy gradients to SDEs, since the policy gradient is estimated on a finite set of trajectories, it can be ill-defined, and the policy behavior in data-scarce regions may be uncontrolled. This challenge compromises the stability of policy gradients and negatively impacts sample complexity. To address these issues, we propose constraining the SDE to be consistent with its associated perturbation process. Since the perturbation process covers the entire space and is easy to sample, we can mitigate the aforementioned problems. Our framework offers a general approach allowing for a versatile selection of policy gradient methods to effectively and efficiently train SDEs. We evaluate our algorithm on the task of structure-based drug design and optimize the binding affinity of generated ligand molecules. Our method achieves the best Vina score -9.07 on the CrossDocked2020 dataset.
Related papers
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
We propose a simulation-free algorithm for the solution of generic problems in optimal control (SOC)
Unlike existing methods, our approach does not require the solution of an adjoint problem.
arXiv Detail & Related papers (2024-10-07T16:16:53Z) - Landscape of Policy Optimization for Finite Horizon MDPs with General State and Action [10.219627570276689]
We develop a framework for a class of Markov Decision Processes with general state and spaces.
We show that gradient methods converge to the globally optimal policy with a nonasymptomatic condition.
Our result establishes first complexity for multi-period inventory systems.
arXiv Detail & Related papers (2024-09-25T17:56:02Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Mollification Effects of Policy Gradient Methods [16.617678267301702]
We develop a rigorous framework for understanding how policy gradient methods mollify non-smooth optimization landscapes.
We demonstrate the equivalence between policy gradient methods and solving backward heat equations.
We make the connection between this limitation and the uncertainty principle in harmonic analysis to understand the effects of exploration with policies in RL.
arXiv Detail & Related papers (2024-05-28T05:05:33Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Beyond Stationarity: Convergence Analysis of Stochastic Softmax Policy Gradient Methods [0.40964539027092917]
Markov Decision Processes (MDPs) are a formal framework for modeling and solving sequential decision-making problems.
In practice all parameters are often trained simultaneously, ignoring the inherent structure suggested by dynamic programming.
This paper introduces a combination of dynamic programming and policy gradient called dynamic policy gradient, where the parameters are trained backwards in time.
arXiv Detail & Related papers (2023-10-04T09:21:01Z) - High-probability sample complexities for policy evaluation with linear function approximation [88.87036653258977]
We investigate the sample complexities required to guarantee a predefined estimation error of the best linear coefficients for two widely-used policy evaluation algorithms.
We establish the first sample complexity bound with high-probability convergence guarantee that attains the optimal dependence on the tolerance level.
arXiv Detail & Related papers (2023-05-30T12:58:39Z) - Policy Gradient for Rectangular Robust Markov Decision Processes [62.397882389472564]
We introduce robust policy gradient (RPG), a policy-based method that efficiently solves rectangular robust Markov decision processes (MDPs)
Our resulting RPG can be estimated from data with the same time complexity as its non-robust equivalent.
arXiv Detail & Related papers (2023-01-31T12:40:50Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
We present a new algorithm for a policy gradient in TMDPs by a simple extension of the proximal policy optimization (PPO) algorithm.
We demonstrate this on a real-world multiple-objective navigation problem with an arbitrary ordering of objectives both in simulation and on a real robot.
arXiv Detail & Related papers (2022-09-15T07:22:58Z) - Non-Parametric Stochastic Policy Gradient with Strategic Retreat for
Non-Stationary Environment [1.5229257192293197]
We propose a systematic methodology to learn a sequence of optimal control policies non-parametrically.
Our methodology has outperformed the well-established DDPG and TD3 methodology by a sizeable margin in terms of learning performance.
arXiv Detail & Related papers (2022-03-24T21:41:13Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
We consider an improper reinforcement learning setting where the learner is given M base controllers for an unknown Markov Decision Process.
We propose a gradient-based approach that operates over a class of improper mixtures of the controllers.
arXiv Detail & Related papers (2021-02-16T14:53:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.