論文の概要: ProMoAI: Process Modeling with Generative AI
- arxiv url: http://arxiv.org/abs/2403.04327v1
- Date: Thu, 7 Mar 2024 08:48:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 14:33:26.198610
- Title: ProMoAI: Process Modeling with Generative AI
- Title(参考訳): ProMoAI: 生成AIによるプロセスモデリング
- Authors: Humam Kourani, Alessandro Berti, Daniel Schuster, Wil M. P. van der
Aalst
- Abstract要約: ProMoAIは、LLM(Large Language Models)を利用して、テキスト記述からプロセスモデルを自動的に生成する新しいツールである。
また、高度なプロンプトエンジニアリング、エラーハンドリング、コード生成技術も組み込まれている。
- 参考スコア(独自算出の注目度): 45.129578769739
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: ProMoAI is a novel tool that leverages Large Language Models (LLMs) to
automatically generate process models from textual descriptions, incorporating
advanced prompt engineering, error handling, and code generation techniques.
Beyond automating the generation of complex process models, ProMoAI also
supports process model optimization. Users can interact with the tool by
providing feedback on the generated model, which is then used for refining the
process model. ProMoAI utilizes the capabilities LLMs to offer a novel,
AI-driven approach to process modeling, significantly reducing the barrier to
entry for users without deep technical knowledge in process modeling.
- Abstract(参考訳): promoaiは、テキスト記述からプロセスモデルを自動的に生成し、高度なプロンプトエンジニアリング、エラー処理、コード生成技術を含む、大きな言語モデル(llm)を活用する新しいツールである。
複雑なプロセスモデルの自動生成に加えて、ProMoAIはプロセスモデルの最適化もサポートする。
生成されたモデルに対するフィードバックを提供することで、ユーザはツールと対話することができる。
ProMoAIは、LLMを使用して、プロセスモデリングに対する新しいAI駆動のアプローチを提供し、プロセスモデリングの深い技術知識のないユーザへの参入障壁を著しく低減する。
関連論文リスト
- Knowledge Graph Modeling-Driven Large Language Model Operating System (LLM OS) for Task Automation in Process Engineering Problem-Solving [0.0]
本稿では,化学・プロセス産業における複雑な問題の解決を目的としたAI駆動型フレームワークであるプロセスエンジニアリングオペレーションアシスタント(PEOA)を紹介する。
このフレームワークはメタエージェントによって構成されたモジュラーアーキテクチャを採用しており、中央コーディネータとして機能している。
その結果、計算の自動化、プロトタイピングの高速化、産業プロセスに対するAIによる意思決定支援におけるフレームワークの有効性が示された。
論文 参考訳(メタデータ) (2024-08-23T13:52:47Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
モデルマージは、機械学習コミュニティにおける効率的なエンパワーメント技術である。
これらの手法の体系的かつ徹底的なレビューに関する文献には大きなギャップがある。
論文 参考訳(メタデータ) (2024-08-14T16:58:48Z) - Leveraging Large Language Models for Enhanced Process Model Comprehension [33.803742664323856]
ビジネスプロセスマネジメント(BPM)では、効果的にプロセスモデルを理解することが重要であるが、重大な課題を生じさせる。
本稿では,Large Language Models(LLM)の高度な機能を活用し,複雑なプロセスモデルの解釈可能性を高める新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-08T13:12:46Z) - MAO: A Framework for Process Model Generation with Multi-Agent Orchestration [12.729855942941724]
本稿では,マルチエージェントオーケストレーション(MAO)を用いたプロセスモデルの自動生成フレームワークについて検討する。
大きな言語モデルは幻覚を起こす傾向があるため、エージェントはプロセスモデルにおける意味幻覚をレビューし、修復する必要がある。
実験により、我々のフレームワークが生成したプロセスモデルは、4つの異なるデータセットで手動モデリングを89%、61%、52%、75%以上上回っていることが示された。
論文 参考訳(メタデータ) (2024-08-04T03:32:17Z) - Process Modeling With Large Language Models [42.0652924091318]
本稿では,大規模言語モデル(LLM)のプロセスモデリングへの統合について検討する。
プロセスモデルの自動生成と反復的改善にLLMを利用するフレームワークを提案する。
予備的な結果は、プロセスモデリングタスクを合理化するフレームワークの能力を示している。
論文 参考訳(メタデータ) (2024-03-12T11:27:47Z) - On Augmenting Scenario-Based Modeling with Generative AI [1.4501446815590895]
モデリングプロセスの一環として,チャットボットのより安全で構造化された利用方法について概説する。
本稿では,モデルの自動解析を容易にするシナリオベースモデリング手法を提案する。
このアプローチの可能性を浮き彫りにした好適な予備結果について述べる。
論文 参考訳(メタデータ) (2024-01-04T12:58:25Z) - Extending Process Discovery with Model Complexity Optimization and
Cyclic States Identification: Application to Healthcare Processes [62.997667081978825]
モデル最適化のための半自動支援を実現するプロセスマイニング手法を提案する。
所望の粒度で生モデルを抽象化するモデル単純化手法が提案されている。
医療分野の異なるアプリケーションから得られた3つのデータセットを用いて、技術的ソリューションの能力を実証することを目的としている。
論文 参考訳(メタデータ) (2022-06-10T16:20:59Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - VAE-LIME: Deep Generative Model Based Approach for Local Data-Driven
Model Interpretability Applied to the Ironmaking Industry [70.10343492784465]
モデル予測だけでなく、その解釈可能性も、プロセスエンジニアに公開する必要があります。
LIMEに基づくモデルに依存しない局所的解釈可能性ソリューションが最近出現し、元の手法が改良された。
本稿では, 燃焼炉で生成する高温金属の温度を推定するデータ駆動型モデルの局所的解釈可能性に関する新しいアプローチ, VAE-LIMEを提案する。
論文 参考訳(メタデータ) (2020-07-15T07:07:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。