LoCoDL: Communication-Efficient Distributed Learning with Local Training
and Compression
- URL: http://arxiv.org/abs/2403.04348v1
- Date: Thu, 7 Mar 2024 09:22:50 GMT
- Title: LoCoDL: Communication-Efficient Distributed Learning with Local Training
and Compression
- Authors: Laurent Condat, Artavazd Maranjyan, Peter Richt\'arik
- Abstract summary: We introduce LoCoDL, a communication-efficient algorithm that leverages the two popular and effective techniques of Local training, which reduces the communication frequency, and Compression, in which short bitstreams are sent instead of full-dimensional vectors of floats.
LoCoDL provably benefits from local training and compression and enjoys a doubly-accelerated communication complexity, with respect to the condition number of the functions and the model dimension, in the general heterogenous regime with strongly convex functions.
- Score: 8.37672888329615
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Distributed optimization and Learning, and even more in the modern
framework of federated learning, communication, which is slow and costly, is
critical. We introduce LoCoDL, a communication-efficient algorithm that
leverages the two popular and effective techniques of Local training, which
reduces the communication frequency, and Compression, in which short bitstreams
are sent instead of full-dimensional vectors of floats. LoCoDL works with a
large class of unbiased compressors that includes widely-used sparsification
and quantization methods. LoCoDL provably benefits from local training and
compression and enjoys a doubly-accelerated communication complexity, with
respect to the condition number of the functions and the model dimension, in
the general heterogenous regime with strongly convex functions. This is
confirmed in practice, with LoCoDL outperforming existing algorithms.
Related papers
- Differential error feedback for communication-efficient decentralized learning [48.924131251745266]
We propose a new decentralized communication-efficient learning approach that blends differential quantization with error feedback.
We show that the resulting communication-efficient strategy is stable both in terms of mean-square error and average bit rate.
The results establish that, in the small step-size regime and with a finite number of bits, it is possible to attain the performance achievable in the absence of compression.
arXiv Detail & Related papers (2024-06-26T15:11:26Z) - FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models [56.21666819468249]
Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server.
We introduce FedComLoc, integrating practical and effective compression into emphScaffnew to further enhance communication efficiency.
arXiv Detail & Related papers (2024-03-14T22:29:59Z) - Communication-Efficient Distributed Learning with Local Immediate Error
Compensation [95.6828475028581]
We propose the Local Immediate Error Compensated SGD (LIEC-SGD) optimization algorithm.
LIEC-SGD is superior to previous works in either the convergence rate or the communication cost.
arXiv Detail & Related papers (2024-02-19T05:59:09Z) - TAMUNA: Doubly Accelerated Distributed Optimization with Local Training, Compression, and Partial Participation [53.84175614198885]
In distributed optimization and learning, several machines alternate between local computations in parallel and communication with a distant server.
We propose TAMUNA, the first algorithm for distributed optimization that leveraged the two strategies of local training and compression jointly and allows for partial participation.
arXiv Detail & Related papers (2023-02-20T08:37:44Z) - Provably Doubly Accelerated Federated Learning: The First Theoretically
Successful Combination of Local Training and Compressed Communication [7.691755449724637]
We propose the first algorithm for distributed optimization and federated learning.
Our algorithm converges linearly to an exact solution, with a doubly accelerated rate.
arXiv Detail & Related papers (2022-10-24T14:13:54Z) - Personalized Federated Learning with Communication Compression [5.389294754404344]
We equip our Loopless Gradient Descent (L2GD) algorithm with a bidirectional communication protocol.
Our algorithm operates on a probabilistic communication protocol, where communication does not happen on a fixed schedule.
arXiv Detail & Related papers (2022-09-12T11:08:44Z) - Communication-Compressed Adaptive Gradient Method for Distributed
Nonconvex Optimization [21.81192774458227]
One of the major bottlenecks is the large communication cost between the central server and the local workers.
Our proposed distributed learning framework features an effective gradient gradient compression strategy.
arXiv Detail & Related papers (2021-11-01T04:54:55Z) - A Linearly Convergent Algorithm for Decentralized Optimization: Sending
Less Bits for Free! [72.31332210635524]
Decentralized optimization methods enable on-device training of machine learning models without a central coordinator.
We propose a new randomized first-order method which tackles the communication bottleneck by applying randomized compression operators.
We prove that our method can solve the problems without any increase in the number of communications compared to the baseline.
arXiv Detail & Related papers (2020-11-03T13:35:53Z) - PowerGossip: Practical Low-Rank Communication Compression in
Decentralized Deep Learning [62.440827696638664]
We introduce a simple algorithm that directly compresses the model differences between neighboring workers.
Inspired by the PowerSGD for centralized deep learning, this algorithm uses power steps to maximize the information transferred per bit.
arXiv Detail & Related papers (2020-08-04T09:14:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.