FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models
- URL: http://arxiv.org/abs/2403.09904v1
- Date: Thu, 14 Mar 2024 22:29:59 GMT
- Title: FedComLoc: Communication-Efficient Distributed Training of Sparse and Quantized Models
- Authors: Kai Yi, Georg Meinhardt, Laurent Condat, Peter Richtárik,
- Abstract summary: Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server.
We introduce FedComLoc, integrating practical and effective compression into emphScaffnew to further enhance communication efficiency.
- Score: 56.21666819468249
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has garnered increasing attention due to its unique characteristic of allowing heterogeneous clients to process their private data locally and interact with a central server, while being respectful of privacy. A critical bottleneck in FL is the communication cost. A pivotal strategy to mitigate this burden is \emph{Local Training}, which involves running multiple local stochastic gradient descent iterations between communication phases. Our work is inspired by the innovative \emph{Scaffnew} algorithm, which has considerably advanced the reduction of communication complexity in FL. We introduce FedComLoc (Federated Compressed and Local Training), integrating practical and effective compression into \emph{Scaffnew} to further enhance communication efficiency. Extensive experiments, using the popular TopK compressor and quantization, demonstrate its prowess in substantially reducing communication overheads in heterogeneous settings.
Related papers
- Communication-Efficient Federated Knowledge Graph Embedding with Entity-Wise Top-K Sparsification [49.66272783945571]
Federated Knowledge Graphs Embedding learning (FKGE) encounters challenges in communication efficiency stemming from the considerable size of parameters and extensive communication rounds.
We propose bidirectional communication-efficient FedS based on Entity-Wise Top-K Sparsification strategy.
arXiv Detail & Related papers (2024-06-19T05:26:02Z) - Prune at the Clients, Not the Server: Accelerated Sparse Training in Federated Learning [56.21666819468249]
Resource constraints of clients and communication costs pose major problems for training large models in Federated Learning.
We introduce Sparse-ProxSkip, which combines training and acceleration in a sparse setting.
We demonstrate the good performance of Sparse-ProxSkip in extensive experiments.
arXiv Detail & Related papers (2024-05-31T05:21:12Z) - LoCoDL: Communication-Efficient Distributed Learning with Local Training
and Compression [8.37672888329615]
We introduce LoCoDL, a communication-efficient algorithm that leverages the two popular and effective techniques of Local training, which reduces the communication frequency, and Compression, in which short bitstreams are sent instead of full-dimensional vectors of floats.
LoCoDL provably benefits from local training and compression and enjoys a doubly-accelerated communication complexity, with respect to the condition number of the functions and the model dimension, in the general heterogenous regime with strongly convex functions.
arXiv Detail & Related papers (2024-03-07T09:22:50Z) - Communication-Efficient Federated Learning through Adaptive Weight
Clustering and Server-Side Distillation [10.541541376305245]
Federated Learning (FL) is a promising technique for the collaborative training of deep neural networks across multiple devices.
FL is hindered by excessive communication costs due to repeated server-client communication during training.
We propose FedCompress, a novel approach that combines dynamic weight clustering and server-side knowledge distillation.
arXiv Detail & Related papers (2024-01-25T14:49:15Z) - SoteriaFL: A Unified Framework for Private Federated Learning with
Communication Compression [40.646108010388986]
We propose a unified framework that enhances the communication efficiency of private federated learning with communication compression.
We provide a comprehensive characterization of its performance trade-offs in terms of privacy, utility, and communication complexity.
arXiv Detail & Related papers (2022-06-20T16:47:58Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - Communication-Efficient Federated Learning with Dual-Side Low-Rank
Compression [8.353152693578151]
Federated learning (FL) is a promising and powerful approach for training deep learning models without sharing the raw data of clients.
We propose a new training method, referred to as federated learning with dual-side low-rank compression (FedDLR)
We show that FedDLR outperforms the state-of-the-art solutions in terms of both the communication and efficiency.
arXiv Detail & Related papers (2021-04-26T09:13:31Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z) - Faster Non-Convex Federated Learning via Global and Local Momentum [57.52663209739171]
textttFedGLOMO is the first (first-order) FLtexttFedGLOMO algorithm.
Our algorithm is provably optimal even with communication between the clients and the server.
arXiv Detail & Related papers (2020-12-07T21:05:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.