論文の概要: Source Matters: Source Dataset Impact on Model Robustness in Medical Imaging
- arxiv url: http://arxiv.org/abs/2403.04484v2
- Date: Mon, 19 Aug 2024 13:06:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 03:27:41.877951
- Title: Source Matters: Source Dataset Impact on Model Robustness in Medical Imaging
- Title(参考訳): 情報源:医療画像におけるモデルロバスト性に対するソースデータセットの影響
- Authors: Dovile Juodelyte, Yucheng Lu, Amelia Jiménez-Sánchez, Sabrina Bottazzi, Enzo Ferrante, Veronika Cheplygina,
- Abstract要約: 我々は、ImageNetとRadImageNetが同等の分類性能を達成することを示す。
ImageNetは、共同ファウンダーに過度にフィットする傾向にある。
ImageNet-pretrained modelを使用する研究者は、モデルを再検討することを推奨する。
- 参考スコア(独自算出の注目度): 14.250975981451914
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Transfer learning has become an essential part of medical imaging classification algorithms, often leveraging ImageNet weights. The domain shift from natural to medical images has prompted alternatives such as RadImageNet, often showing comparable classification performance. However, it remains unclear whether the performance gains from transfer learning stem from improved generalization or shortcut learning. To address this, we conceptualize confounders by introducing the Medical Imaging Contextualized Confounder Taxonomy (MICCAT) and investigate a range of confounders across it -- whether synthetic or sampled from the data -- using two public chest X-ray and CT datasets. We show that ImageNet and RadImageNet achieve comparable classification performance, yet ImageNet is much more prone to overfitting to confounders. We recommend that researchers using ImageNet-pretrained models reexamine their model robustness by conducting similar experiments. Our code and experiments are available at https://github.com/DovileDo/source-matters.
- Abstract(参考訳): 転送学習は医療画像分類アルゴリズムの重要な部分となり、しばしば画像ネットの重みを利用する。
自然画像から医用画像へのドメインシフトは、RadImageNetのような代替手段を誘発し、しばしば同等の分類性能を示している。
しかし, 伝達学習の性能向上が一般化やショートカット学習の改善によるものなのかは, いまだ不明である。
これを解決するために、私たちは、Medical Imaging Contextualized Confounder Taxonomy (MICCAT)を導入して、共同創設者を概念化する。
ImageNetとRadImageNetは同等の分類性能を達成していますが、ImageNetは共同設立者に過度に適合する傾向があります。
ImageNet-pretrained model を用いた研究者は、同様の実験を行うことで、モデルロバスト性を再検討することを推奨する。
私たちのコードと実験はhttps://github.com/DovileDo/source-matters.comで公開されています。
関連論文リスト
- Comparative Analysis of ImageNet Pre-Trained Deep Learning Models and
DINOv2 in Medical Imaging Classification [7.205610366609243]
本稿では,脳MRIデータの3つの臨床的モダリティを用いたグリオーマグレーディングタスクを行った。
我々は、ImageNetやDINOv2をベースとした様々な事前学習深層学習モデルの性能を比較した。
臨床データでは,DINOv2 はImageNet ベースで事前訓練したモデルほど優れていなかった。
論文 参考訳(メタデータ) (2024-02-12T11:49:08Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
我々は,GANに基づく拡張性能のデータセットサイズ依存性について,小サンプルに着目して検討した。
両方のセットでStyleGAN2-ADAをトレーニングし、生成した画像の品質を検証した後、マルチクラス分類問題における拡張アプローチの1つとしてトレーニングされたGANを使用する。
GANベースの拡張アプローチは、中規模および大規模データセットでは古典的な拡張に匹敵するが、より小さなデータセットでは不十分である。
論文 参考訳(メタデータ) (2024-01-26T08:28:13Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
ディープラーニングを医療分野に適用する上で最大の課題は、トレーニングデータの提供である。
データ拡張は、限られたデータセットに直面した時に機械学習で使用される典型的な方法論である。
本研究は, 新型コロナウイルスの胸部X線画像セットを限定して, StyleGAN2-ADAモデルを用いて訓練するものである。
論文 参考訳(メタデータ) (2023-04-18T15:39:58Z) - Revisiting Hidden Representations in Transfer Learning for Medical
Imaging [2.4545492329339815]
7つの医学分類課題について,ImageNetとRadImageNetを比較した。
その結果,ImageNetとRadImageNetは直感とは対照的に,異なる中間表現に収束する可能性が示唆された。
その結果, ネットワーク間の微調整前後の類似性は, 性能向上と相関しないことがわかった。
論文 参考訳(メタデータ) (2023-02-16T13:04:59Z) - A Systematic Benchmarking Analysis of Transfer Learning for Medical
Image Analysis [7.339428207644444]
我々は,最新の大規模きめ細かいデータセットであるiNat2021で事前訓練されたモデルの転送可能性について,系統的研究を行った。
本稿では,医用画像上のイメージネットモデルを継続的に(事前学習)することにより,自然画像と医用画像の領域ギャップを埋める実践的アプローチを提案する。
論文 参考訳(メタデータ) (2021-08-12T19:08:34Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z) - Comparing to Learn: Surpassing ImageNet Pretraining on Radiographs By
Comparing Image Representations [39.08296644280442]
そこで本研究では,手動のアノテーションを使わずに700kのラジオグラフから学習する事前学習手法を提案する。
画像表現を比較して頑健な特徴を学習するため,本手法をC2L(Comparing to Learn)と呼ぶ。
実験結果から,C2L は ImageNet の事前学習と過去の最先端アプローチを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-15T01:14:34Z) - From ImageNet to Image Classification: Contextualizing Progress on
Benchmarks [99.19183528305598]
ImageNet作成プロセスにおける特定の設計選択が、結果のデータセットの忠実性に与える影響について検討する。
私たちの分析では、ノイズの多いデータ収集パイプラインが、結果のベンチマークと、それがプロキシとして機能する実世界のタスクとの間に、体系的なミスアライメントをもたらす可能性があることを指摘しています。
論文 参考訳(メタデータ) (2020-05-22T17:39:16Z) - I Am Going MAD: Maximum Discrepancy Competition for Comparing
Classifiers Adaptively [135.7695909882746]
我々は、MAD(Maximum Discrepancy)コンペティションを命名する。
任意に大きいラベル付き画像のコーパスから小さなテストセットを適応的にサンプリングする。
結果のモデル依存画像集合に人間のラベルを付けると、競合する分類器の相対的な性能が明らかになる。
論文 参考訳(メタデータ) (2020-02-25T03:32:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。