Uncertainty-Aware Relational Graph Neural Network for Few-Shot Knowledge Graph Completion
- URL: http://arxiv.org/abs/2403.04521v2
- Date: Thu, 21 Mar 2024 04:28:45 GMT
- Title: Uncertainty-Aware Relational Graph Neural Network for Few-Shot Knowledge Graph Completion
- Authors: Qian Li, Shu Guo, Yinjia Chen, Cheng Ji, Jiawei Sheng, Jianxin Li,
- Abstract summary: Few-shot knowledge graph completion (FKGC) aims to query the unseen facts of a relation given its few-shot reference entity pairs.
Existing FKGC works neglect such uncertainty, which leads them more susceptible to limited reference samples with noises.
We propose a novel uncertainty-aware few-shot KG completion framework (UFKGC) to model uncertainty for a better understanding of the limited data.
- Score: 12.887073684904147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot knowledge graph completion (FKGC) aims to query the unseen facts of a relation given its few-shot reference entity pairs. The side effect of noises due to the uncertainty of entities and triples may limit the few-shot learning, but existing FKGC works neglect such uncertainty, which leads them more susceptible to limited reference samples with noises. In this paper, we propose a novel uncertainty-aware few-shot KG completion framework (UFKGC) to model uncertainty for a better understanding of the limited data by learning representations under Gaussian distribution. Uncertainty representation is first designed for estimating the uncertainty scope of the entity pairs after transferring feature representations into a Gaussian distribution. Further, to better integrate the neighbors with uncertainty characteristics for entity features, we design an uncertainty-aware relational graph neural network (UR-GNN) to conduct convolution operations between the Gaussian distributions. Then, multiple random samplings are conducted for reference triples within the Gaussian distribution to generate smooth reference representations during the optimization. The final completion score for each query instance is measured by the designed uncertainty optimization to make our approach more robust to the noises in few-shot scenarios. Experimental results show that our approach achieves excellent performance on two benchmark datasets compared to its competitors.
Related papers
- Robust Gaussian Processes via Relevance Pursuit [17.39376866275623]
We propose and study a GP model that achieves robustness against sparse outliers by inferring data-point-specific noise levels.
We show, surprisingly, that the model can be parameterized such that the associated log marginal likelihood is strongly concave in the data-point-specific noise variances.
arXiv Detail & Related papers (2024-10-31T17:59:56Z) - Learning Latent Graph Structures and their Uncertainty [63.95971478893842]
Graph Neural Networks (GNNs) use relational information as an inductive bias to enhance the model's accuracy.
As task-relevant relations might be unknown, graph structure learning approaches have been proposed to learn them while solving the downstream prediction task.
arXiv Detail & Related papers (2024-05-30T10:49:22Z) - Modeling uncertainty for Gaussian Splatting [21.836830270709]
We present the first framework for uncertainty estimation using Gaussian Splatting (GS)
We introduce a Variational Inference-based approach that seamlessly integrates uncertainty prediction into the common rendering pipeline of GS.
We also introduce the Area Under Sparsification Error (AUSE) as a new term in the loss function, enabling optimization of uncertainty estimation alongside image reconstruction.
arXiv Detail & Related papers (2024-03-27T11:45:08Z) - Distributional Shift-Aware Off-Policy Interval Estimation: A Unified
Error Quantification Framework [8.572441599469597]
We study high-confidence off-policy evaluation in the context of infinite-horizon Markov decision processes.
The objective is to establish a confidence interval (CI) for the target policy value using only offline data pre-collected from unknown behavior policies.
We show that our algorithm is sample-efficient, error-robust, and provably convergent even in non-linear function approximation settings.
arXiv Detail & Related papers (2023-09-23T06:35:44Z) - Online Bootstrap Inference with Nonconvex Stochastic Gradient Descent
Estimator [0.0]
In this paper, we investigate the theoretical properties of gradient descent (SGD) for statistical inference in the context of convex problems.
We propose two coferential procedures which may contain multiple error minima.
arXiv Detail & Related papers (2023-06-03T22:08:10Z) - Normalizing Flow-based Neural Process for Few-Shot Knowledge Graph
Completion [69.55700751102376]
Few-shot knowledge graph completion (FKGC) aims to predict missing facts for unseen relations with few-shot associated facts.
Existing FKGC methods are based on metric learning or meta-learning, which often suffer from the out-of-distribution and overfitting problems.
In this paper, we propose a normalizing flow-based neural process for few-shot knowledge graph completion (NP-FKGC)
arXiv Detail & Related papers (2023-04-17T11:42:28Z) - Rethinking Missing Data: Aleatoric Uncertainty-Aware Recommendation [59.500347564280204]
We propose a new Aleatoric Uncertainty-aware Recommendation (AUR) framework.
AUR consists of a new uncertainty estimator along with a normal recommender model.
As the chance of mislabeling reflects the potential of a pair, AUR makes recommendations according to the uncertainty.
arXiv Detail & Related papers (2022-09-22T04:32:51Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
We provide a framework for designing Generative Adversarial Networks (GANs) to solve high dimensional robust statistics problems.
Our work extend these to robust mean estimation, second moment estimation, and robust linear regression.
In terms of techniques, our proposed GAN losses can be viewed as a smoothed and generalized Kolmogorov-Smirnov distance.
arXiv Detail & Related papers (2022-02-02T20:11:33Z) - Robust Graph Learning Under Wasserstein Uncertainty [35.85333465732067]
In many scenarios, an accurate graph structure representing signals is not available at all.
We propose a graph learning framework using Wasserstein distributionally robust optimization (WDRO)
We show that our scheme can learn a reliable graph in the context of uncertainty.
arXiv Detail & Related papers (2021-05-10T09:09:44Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty quantification for nonconvex tensor completion: Confidence
intervals, heteroscedasticity and optimality [92.35257908210316]
We study the problem of estimating a low-rank tensor given incomplete and corrupted observations.
We find that it attains unimprovable rates $ell-2$ accuracy.
arXiv Detail & Related papers (2020-06-15T17:47:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.