Modeling uncertainty for Gaussian Splatting
- URL: http://arxiv.org/abs/2403.18476v1
- Date: Wed, 27 Mar 2024 11:45:08 GMT
- Title: Modeling uncertainty for Gaussian Splatting
- Authors: Luca Savant, Diego Valsesia, Enrico Magli,
- Abstract summary: We present the first framework for uncertainty estimation using Gaussian Splatting (GS)
We introduce a Variational Inference-based approach that seamlessly integrates uncertainty prediction into the common rendering pipeline of GS.
We also introduce the Area Under Sparsification Error (AUSE) as a new term in the loss function, enabling optimization of uncertainty estimation alongside image reconstruction.
- Score: 21.836830270709
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Stochastic Gaussian Splatting (SGS): the first framework for uncertainty estimation using Gaussian Splatting (GS). GS recently advanced the novel-view synthesis field by achieving impressive reconstruction quality at a fraction of the computational cost of Neural Radiance Fields (NeRF). However, contrary to the latter, it still lacks the ability to provide information about the confidence associated with their outputs. To address this limitation, in this paper, we introduce a Variational Inference-based approach that seamlessly integrates uncertainty prediction into the common rendering pipeline of GS. Additionally, we introduce the Area Under Sparsification Error (AUSE) as a new term in the loss function, enabling optimization of uncertainty estimation alongside image reconstruction. Experimental results on the LLFF dataset demonstrate that our method outperforms existing approaches in terms of both image rendering quality and uncertainty estimation accuracy. Overall, our framework equips practitioners with valuable insights into the reliability of synthesized views, facilitating safer decision-making in real-world applications.
Related papers
- UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - Calibrated Probabilistic Forecasts for Arbitrary Sequences [58.54729945445505]
Real-world data streams can change unpredictably due to distribution shifts, feedback loops and adversarial actors.
We present a forecasting framework ensuring valid uncertainty estimates regardless of how data evolves.
arXiv Detail & Related papers (2024-09-27T21:46:42Z) - Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning [0.19418036471925312]
We introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning.
Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis.
arXiv Detail & Related papers (2024-08-05T08:12:25Z) - Uncertainty-Aware Relational Graph Neural Network for Few-Shot Knowledge Graph Completion [12.887073684904147]
Few-shot knowledge graph completion (FKGC) aims to query the unseen facts of a relation given its few-shot reference entity pairs.
Existing FKGC works neglect such uncertainty, which leads them more susceptible to limited reference samples with noises.
We propose a novel uncertainty-aware few-shot KG completion framework (UFKGC) to model uncertainty for a better understanding of the limited data.
arXiv Detail & Related papers (2024-03-07T14:23:25Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
We consider the problem of quantifying uncertainty over expected cumulative rewards in model-based reinforcement learning.
We propose a new uncertainty Bellman equation (UBE) whose solution converges to the true posterior variance over values.
We introduce a general-purpose policy optimization algorithm, Q-Uncertainty Soft Actor-Critic (QU-SAC) that can be applied for either risk-seeking or risk-averse policy optimization.
arXiv Detail & Related papers (2023-12-07T15:55:58Z) - Uncertainty Estimation for Safety-critical Scene Segmentation via
Fine-grained Reward Maximization [12.79542334840646]
Uncertainty estimation plays an important role for future reliable deployment of deep segmentation models in safety-critical scenarios.
We propose a novel fine-grained reward (FGRM) framework to address uncertainty estimation.
Our method outperforms state-of-the-art methods by a clear margin on all the calibration metrics of uncertainty estimation.
arXiv Detail & Related papers (2023-11-05T17:43:37Z) - Model-Based Uncertainty in Value Functions [89.31922008981735]
We focus on characterizing the variance over values induced by a distribution over MDPs.
Previous work upper bounds the posterior variance over values by solving a so-called uncertainty Bellman equation.
We propose a new uncertainty Bellman equation whose solution converges to the true posterior variance over values.
arXiv Detail & Related papers (2023-02-24T09:18:27Z) - Stochastic Neural Radiance Fields:Quantifying Uncertainty in Implicit 3D
Representations [19.6329380710514]
Uncertainty quantification is a long-standing problem in Machine Learning.
We propose Neural Radiance Fields (S-NeRF), a generalization of standard NeRF that learns a probability distribution over all the possible fields modeling the scene.
S-NeRF is able to provide more reliable predictions and confidence values than generic approaches previously proposed for uncertainty estimation in other domains.
arXiv Detail & Related papers (2021-09-05T16:56:43Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks [65.24701908364383]
We show that a sufficient condition for a uncertainty on a ReLU network is "to be a bit Bayesian calibrated"
We further validate these findings empirically via various standard experiments using common deep ReLU networks and Laplace approximations.
arXiv Detail & Related papers (2020-02-24T08:52:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.