論文の概要: Architectural Blueprint For Heterogeneity-Resilient Federated Learning
- arxiv url: http://arxiv.org/abs/2403.04546v2
- Date: Fri, 14 Jun 2024 14:25:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 18:52:34.236071
- Title: Architectural Blueprint For Heterogeneity-Resilient Federated Learning
- Title(参考訳): 不均一性と弾力性のあるフェデレーションラーニングのためのアーキテクチャの青写真
- Authors: Satwat Bashir, Tasos Dagiuklas, Kasra Kassai, Muddesar Iqbal,
- Abstract要約: 提案アーキテクチャは、クライアントデータの不均一性と計算制約に関連する課題に対処する。
スケーラブルでプライバシ保護のフレームワークを導入し、分散機械学習の効率を高める。
- 参考スコア(独自算出の注目度): 7.974704682202876
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a novel three tier architecture for federated learning to optimize edge computing environments. The proposed architecture addresses the challenges associated with client data heterogeneity and computational constraints. It introduces a scalable, privacy preserving framework that enhances the efficiency of distributed machine learning. Through experimentation, the paper demonstrates the architecture capability to manage non IID data sets more effectively than traditional federated learning models. Additionally, the paper highlights the potential of this innovative approach to significantly improve model accuracy, reduce communication overhead, and facilitate broader adoption of federated learning technologies.
- Abstract(参考訳): 本稿では,エッジコンピューティング環境を最適化するフェデレーション学習のための新しい3層アーキテクチャを提案する。
提案アーキテクチャは、クライアントデータの不均一性と計算制約に関連する課題に対処する。
スケーラブルでプライバシ保護のフレームワークを導入し、分散機械学習の効率を高める。
実験を通じて,従来のフェデレート学習モデルよりも,非IDデータセットを効果的に管理するアーキテクチャ能力を示す。
さらに,本論文では,モデル精度を大幅に向上し,通信オーバーヘッドを低減し,連合学習技術の普及を促進するという,この革新的なアプローチの可能性を強調した。
関連論文リスト
- Federated Learning with Flexible Architectures [12.800116749927266]
本稿では,フレキシブルアーキテクチャを用いたフェデレートラーニング(FedFA)について紹介する。
FedFAは、モデルアグリゲーション中に、クライアントのローカルアーキテクチャとFLシステムにおける最大のネットワークアーキテクチャを整合させるために、レイヤグラフト技術を導入している。
論文 参考訳(メタデータ) (2024-06-14T09:44:46Z) - Personalized Federated Learning with Contextual Modulation and
Meta-Learning [2.7716102039510564]
フェデレーション学習は、分散データソース上で機械学習モデルをトレーニングするための有望なアプローチとして登場した。
本稿では,フェデレートラーニングとメタラーニングを併用して,効率性と一般化能力を両立させる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-23T08:18:22Z) - Serving Deep Learning Model in Relational Databases [72.72372281808694]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL-Centricアーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF-Centricアーキテクチャは、データベースシステム内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
potentialRelation-Centricアーキテクチャは、演算子による大規模テンソル計算を表現することを目的としている。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Heterogeneous Continual Learning [88.53038822561197]
本稿では,ネットワークアーキテクチャの変更に伴う継続学習(CL)問題に対処する新しい枠組みを提案する。
本研究は, 蒸留ファミリ上に構築し, より弱いモデルが教師の役割を担うような, 新たな環境に適応するものである。
また、知識伝達を支援するために、タスク前の視覚的特徴を復元するクイック・ディープ・インバージョン(QDI)を提案する。
論文 参考訳(メタデータ) (2023-06-14T15:54:42Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
フェデレートされたエッジ学習は、プライバシー保護の方法で無線ネットワークのエッジにインテリジェンスをデプロイする、有望な技術である。
このような設定の下で、複数のクライアントは、エッジサーバの調整の下でグローバルジェネリックモデルを協調的にトレーニングする。
本稿では,アナログオーバー・ザ・エア計算を用いて通信ボトルネックに対処する分散トレーニングパラダイムを提案する。
論文 参考訳(メタデータ) (2023-02-24T08:41:19Z) - Heterogeneous Ensemble Knowledge Transfer for Training Large Models in
Federated Learning [22.310090483499035]
フェデレートラーニング(FL)は、エッジデバイスがプライベートデータを中央集約サーバに公開することなく、協調的にモデルを学習することを可能にする。
既存のFLアルゴリズムの多くは、クライアントとサーバにまたがってデプロイされるのと同じアーキテクチャのモデルを必要とする。
本稿では,Fed-ETと呼ばれる新しいアンサンブル知識伝達手法を提案する。
論文 参考訳(メタデータ) (2022-04-27T05:18:32Z) - Rethinking Architecture Design for Tackling Data Heterogeneity in
Federated Learning [53.73083199055093]
注意に基づくアーキテクチャ(例えばTransformers)は、分散シフトに対してかなり堅牢であることを示す。
我々の実験は、畳み込みネットワークをトランスフォーマーに置き換えることによって、過去のデバイスを壊滅的に忘れることを大幅に減らせることを示した。
論文 参考訳(メタデータ) (2021-06-10T21:04:18Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - A Privacy-Preserving Distributed Architecture for
Deep-Learning-as-a-Service [68.84245063902908]
本稿では,ディープラーニング・アズ・ア・サービスのための分散アーキテクチャを提案する。
クラウドベースのマシンとディープラーニングサービスを提供しながら、ユーザの機密データを保存できる。
論文 参考訳(メタデータ) (2020-03-30T15:12:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。