QAQ: Quality Adaptive Quantization for LLM KV Cache
- URL: http://arxiv.org/abs/2403.04643v2
- Date: Fri, 12 Apr 2024 13:00:25 GMT
- Title: QAQ: Quality Adaptive Quantization for LLM KV Cache
- Authors: Shichen Dong, Wen Cheng, Jiayu Qin, Wei Wang,
- Abstract summary: A bottleneck in model deployment emerges due to the linear expansion of the Key-Value cache with the context length.
We propose QAQ, a Quality Adaptive Quantization scheme for the KV cache.
- Score: 3.163526369095745
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The emergence of LLMs has ignited a fresh surge of breakthroughs in NLP applications, particularly in domains such as question-answering systems and text generation. As the need for longer context grows, a significant bottleneck in model deployment emerges due to the linear expansion of the Key-Value (KV) cache with the context length. Existing methods primarily rely on various hypotheses, such as sorting the KV cache based on attention scores for replacement or eviction, to compress the KV cache and improve model throughput. However, heuristics used by these strategies may wrongly evict essential KV cache, which can significantly degrade model performance. In this paper, we propose QAQ, a Quality Adaptive Quantization scheme for the KV cache. We theoretically demonstrate that key cache and value cache exhibit distinct sensitivities to quantization, leading to the formulation of separate quantization strategies for their non-uniform quantization. Through the integration of dedicated outlier handling, as well as an improved attention-aware approach, QAQ achieves up to 10x the compression ratio of the KV cache size with a neglectable impact on model performance. QAQ significantly reduces the practical hurdles of deploying LLMs, opening up new possibilities for longer-context applications. The code is available at github.com/ClubieDong/KVCacheQuantization.
Related papers
- LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - Efficient Inference of Vision Instruction-Following Models with Elastic Cache [76.44955111634545]
We introduce Elastic Cache, a novel strategy for efficient deployment of instruction-following large vision-language models.
We propose an importance-driven cache merging strategy to prune redundancy caches.
For instruction encoding, we utilize the frequency to evaluate the importance of caches.
Results on a range of LVLMs demonstrate that Elastic Cache not only boosts efficiency but also notably outperforms existing pruning methods in language generation.
arXiv Detail & Related papers (2024-07-25T15:29:05Z) - A Simple and Effective $L_2$ Norm-Based Strategy for KV Cache Compression [13.981807478365452]
Existing approaches to reduce the Key-Value cache size involve either fine-tuning the model to learn a compression strategy or leveraging attention scores to reduce the sequence length.
We find a clear correlation between the $L$ and the attention scores over cached KV pairs, where a low $L$ of a key embedding leads to a high attention score during decoding.
Our experimental results show that this simple strategy can reduce the KV cache size by 50% on language modelling and needle-in-a-haystack tasks and 90% on passkey retrieval tasks without losing accuracy.
arXiv Detail & Related papers (2024-06-17T11:35:16Z) - KV Cache is 1 Bit Per Channel: Efficient Large Language Model Inference with Coupled Quantization [34.824534775022144]
We propose Coupled Quantization (CQ) as a technique for KV cache compression.
CQ couples multiple key/value channels together to exploit their inter-dependency and encode the activations in a more information-efficient manner.
We demonstrate that CQ can preserve model quality with KV cache quantized down to 1-bit.
arXiv Detail & Related papers (2024-05-07T00:25:20Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
We introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint.
CORM, a KV cache eviction policy, dynamically retains essential key-value pairs for inference without the need for model fine-tuning.
Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70% with negligible performance degradation across six tasks in LongBench.
arXiv Detail & Related papers (2024-04-24T16:11:54Z) - No Token Left Behind: Reliable KV Cache Compression via Importance-Aware
Mixed Precision Quantization [31.806112535762367]
Key-Value (KV) Caching has become an essential technique for accelerating the inference speed and throughput of generative Large Language Models(LLMs)
arXiv Detail & Related papers (2024-02-28T06:34:54Z) - WKVQuant: Quantizing Weight and Key/Value Cache for Large Language
Models Gains More [55.0856305773081]
Large Language Models (LLMs) face significant deployment challenges due to their substantial memory requirements and the computational demands of auto-regressive text generation process.
This paper addresses these challenges by focusing on the quantization of LLMs, a technique that reduces memory consumption by converting model parameters and activations into low-bit integers.
arXiv Detail & Related papers (2024-02-19T11:33:21Z) - Model Tells You What to Discard: Adaptive KV Cache Compression for LLMs [82.08922896531618]
We introduce adaptive KV cache compression, a plug-and-play method that reduces the memory footprint of generative inference for Large Language Models (LLMs)
We conduct targeted profiling to discern the intrinsic structure of attention modules.
Based on the recognized structure, we then construct the KV cache in an adaptive manner: evicting long-range contexts on attention heads emphasizing local contexts, discarding non-special tokens on attention heads centered on special tokens, and only employing the standard KV cache for attention heads that broadly attend to all tokens.
arXiv Detail & Related papers (2023-10-03T05:17:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.