論文の概要: Analysis of Systems' Performance in Natural Language Processing Competitions
- arxiv url: http://arxiv.org/abs/2403.04693v2
- Date: Wed, 21 Aug 2024 15:50:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-22 22:44:58.267437
- Title: Analysis of Systems' Performance in Natural Language Processing Competitions
- Title(参考訳): 自然言語処理競争におけるシステム性能の分析
- Authors: Sergio Nava-Muñoz, Mario Graff, Hugo Jair Escalante,
- Abstract要約: 本論文は,競技結果と競技成績を統計的に分析するための評価手法について述べる。
提案手法は,修正機構との比較や信頼区間の包含など,いくつかの利点がある。
本分析は,競争結果を効果的に評価するための方法論の有用性を示す。
- 参考スコア(独自算出の注目度): 6.197993866688085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative competitions have gained popularity in the scientific and technological fields. These competitions involve defining tasks, selecting evaluation scores, and devising result verification methods. In the standard scenario, participants receive a training set and are expected to provide a solution for a held-out dataset kept by organizers. An essential challenge for organizers arises when comparing algorithms' performance, assessing multiple participants, and ranking them. Statistical tools are often used for this purpose; however, traditional statistical methods often fail to capture decisive differences between systems' performance. This manuscript describes an evaluation methodology for statistically analyzing competition results and competition. The methodology is designed to be universally applicable; however, it is illustrated using eight natural language competitions as case studies involving classification and regression problems. The proposed methodology offers several advantages, including off-the-shell comparisons with correction mechanisms and the inclusion of confidence intervals. Furthermore, we introduce metrics that allow organizers to assess the difficulty of competitions. Our analysis shows the potential usefulness of our methodology for effectively evaluating competition results.
- Abstract(参考訳): コラボレーションコンペティションは科学や技術分野で人気を博している。
これらの競争には、タスクの定義、評価スコアの選択、結果検証方法の考案が含まれる。
標準的なシナリオでは、参加者はトレーニングセットを受け取り、オーガナイザが保持するホールドアウトデータセットのソリューションを提供する。
オーガナイザにとって重要な課題は、アルゴリズムのパフォーマンスを比較し、複数の参加者を評価し、それらをランク付けするときである。
統計ツールは、しばしばこの目的のために使用されるが、伝統的な統計手法は、システムの性能の決定的な違いを捉えるのに失敗することが多い。
本論文は,競技結果と競技成績を統計的に分析するための評価手法について述べる。
この手法は普遍的に適用できるように設計されているが、分類問題や回帰問題を含むケーススタディとして8つの自然言語コンペティションを用いて説明されている。
提案手法は,修正機構との比較や信頼区間の包含など,いくつかの利点がある。
さらに,主催者が競争の難しさを評価するための指標も導入する。
本分析は,競争結果を効果的に評価するための方法論の有用性を示す。
関連論文リスト
- Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition [70.60872754129832]
アンラーニングに関する最初のNeurIPSコンペティションは、新しいアルゴリズムの開発を刺激しようとした。
世界中から約1200チームが参加した。
トップソリューションを分析し、アンラーニングのベンチマークに関する議論を掘り下げます。
論文 参考訳(メタデータ) (2024-06-13T12:58:00Z) - CompeteSMoE -- Effective Training of Sparse Mixture of Experts via
Competition [52.2034494666179]
スパース・ミックス・オブ・エキスパート(SMoE)は、ネットワークの深さや幅を増大させる平均を超えた、モデルの複雑さをスケールアップする魅力的なソリューションを提供する。
本稿では,この表現崩壊の根本的な課題に対処する競合機構を提案する。
入力を最も高い神経応答を持つ専門家にのみルーティングすることにより、コンペティションが最適推定器と同じ収束率を持つことを示す。
論文 参考訳(メタデータ) (2024-02-04T15:17:09Z) - Competitions in AI -- Robustly Ranking Solvers Using Statistical
Resampling [9.02080113915613]
比較結果の標準的な解釈から得られたランキングは、評価の基礎として使われるベンチマークインスタンスセットのマイナーな変更にも非常に敏感であることを示す。
本稿では,性能データの再サンプリングに基づく競争結果の統計的に有意な分析手法を提案する。
提案手法は,競合スコアの信頼区間を生成するとともに,有界誤差を持つ統計的に堅牢な解法ランキングを生成する。
論文 参考訳(メタデータ) (2023-08-09T16:47:04Z) - Comparison of classifiers in challenge scheme [12.030094148004176]
本稿では,MeOffendEs@IberLEF 2021コンペティションの結果を分析する。
チャレンジ主催者の意思決定を支援するために,再サンプリング技術(ブートストラップ)による推論を提案する。
論文 参考訳(メタデータ) (2023-05-16T23:38:34Z) - In Search of Insights, Not Magic Bullets: Towards Demystification of the
Model Selection Dilemma in Heterogeneous Treatment Effect Estimation [92.51773744318119]
本稿では,異なるモデル選択基準の長所と短所を実験的に検討する。
選択戦略,候補推定器,比較に用いるデータの間には,複雑な相互作用があることを強調した。
論文 参考訳(メタデータ) (2023-02-06T16:55:37Z) - Revisiting Long-tailed Image Classification: Survey and Benchmarks with
New Evaluation Metrics [88.39382177059747]
メトリクスのコーパスは、長い尾の分布で学習するアルゴリズムの正確性、堅牢性、およびバウンダリを測定するために設計されている。
ベンチマークに基づいて,CIFAR10およびCIFAR100データセット上での既存手法の性能を再評価する。
論文 参考訳(メタデータ) (2023-02-03T02:40:54Z) - A portfolio-based analysis method for competition results [0.8680676599607126]
本稿では,コンペティションに参加する問題解決者のパフォーマンスを補完するポートフォリオベースの分析手法について述べる。
本手法はMiniZinc Challengesの結果に示され,ポートフォリオの観点から得られた新たな知見が提示される。
論文 参考訳(メタデータ) (2022-05-30T20:20:45Z) - Enhancing Counterfactual Classification via Self-Training [9.484178349784264]
本研究では, 擬似ラベルによるランダム化試行をシミュレートするために, 観測データ中の有限未確認動作に対して, カテゴリ値で結果を示唆する自己学習アルゴリズムを提案する。
提案アルゴリズムは,合成データセットと実データセットの両方において有効であることを示す。
論文 参考訳(メタデータ) (2021-12-08T18:42:58Z) - Multi-Stage Decentralized Matching Markets: Uncertain Preferences and
Strategic Behaviors [91.3755431537592]
本稿では、現実世界のマッチング市場で最適な戦略を学ぶためのフレームワークを開発する。
我々は,不確実性レベルが特徴の福祉対フェアネストレードオフが存在することを示す。
シングルステージマッチングと比較して、マルチステージマッチングで参加者がより良くなることを証明します。
論文 参考訳(メタデータ) (2021-02-13T19:25:52Z) - Towards Model-Agnostic Post-Hoc Adjustment for Balancing Ranking
Fairness and Algorithm Utility [54.179859639868646]
Bipartiteランキングは、ラベル付きデータから正の個人よりも上位の個人をランク付けするスコアリング機能を学ぶことを目的としている。
学習したスコアリング機能が、異なる保護グループ間で体系的な格差を引き起こすのではないかという懸念が高まっている。
本稿では、二部構成のランキングシナリオにおいて、それらのバランスをとるためのモデル後処理フレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-15T10:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。