論文の概要: QASE Enhanced PLMs: Improved Control in Text Generation for MRC
- arxiv url: http://arxiv.org/abs/2403.04771v1
- Date: Mon, 26 Feb 2024 05:34:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-18 06:29:47.027287
- Title: QASE Enhanced PLMs: Improved Control in Text Generation for MRC
- Title(参考訳): QASE強化PLM:MRC用テキスト生成における制御の改善
- Authors: Lin Ai, Zheng Hui, Zizhou Liu, Julia Hirschberg,
- Abstract要約: 本稿では,機械読取理解のための生成モデルにおける制御外生成の課題に対処するため,QASEモジュールを提案する。
事前学習された生成言語モデル(PLM)の微調整中に統合されたQASEは、これらのPLMをSOTA抽出法にマッチさせることができる。
- 参考スコア(独自算出の注目度): 6.602323571343169
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: To address the challenges of out-of-control generation in generative models for machine reading comprehension (MRC), we introduce the Question-Attended Span Extraction (QASE) module. Integrated during the fine-tuning of pre-trained generative language models (PLMs), QASE enables these PLMs to match SOTA extractive methods and outperform leading LLMs like GPT-4 in MRC tasks, without significant increases in computational costs.
- Abstract(参考訳): 機械読解(MRC)生成モデルにおける制御外生成の課題に対処するため,QASEモジュールを提案する。
事前学習された生成言語モデル (PLM) の微調整中に統合されたQASEは、これらのPLMがSOTA抽出法と整合し、計算コストを大幅に増大させることなく、CMCタスクにおいて GPT-4 のような先進的な LLM よりも優れる。
関連論文リスト
- Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
本稿では,属性制御付き大規模言語モデル(LLM)の制約学習スキーマを提案する。
提案手法は, ベンチマーク上での競合性能と毒性検出タスクを達成しながら, 不適切な応答を少ないLCMに導出することを示す。
論文 参考訳(メタデータ) (2024-10-07T23:38:58Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Enhancing Pre-Trained Generative Language Models with Question Attended Span Extraction on Machine Reading Comprehension [6.602323571343169]
学習前生成言語モデル(PLM)の微調整段階で統合されたQASEは,その性能を著しく向上させる。
QASEモジュールの有効性は、さまざまなデータセットで厳格にテストされている。
論文 参考訳(メタデータ) (2024-04-27T19:42:51Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
本稿では,Large Language Models (LLMs) の知識を低データ構造におけるデータ拡張に活用したCLLMを紹介する。
従来のジェネレータと比較して,低データ方式におけるCLLMの優れた性能を示す。
論文 参考訳(メタデータ) (2023-12-19T12:34:46Z) - Unleashing the Power of Pre-trained Language Models for Offline
Reinforcement Learning [54.682106515794864]
オフライン強化学習(RL)は、事前コンパイルされたデータセットを使用して、ほぼ最適ポリシーを見つけることを目的としている。
本稿では、オフラインRLに事前学習言語モデル(LM)を使用するための決定変換器に基づく一般的なフレームワークである、$textbfMo$tion Control用の$textbfLanguage Models(textbfLaMo$)を紹介する。
経験的な結果から、$textbfLaMo$はスパース・リワードタスクで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-10-31T16:24:17Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - ReWOO: Decoupling Reasoning from Observations for Efficient Augmented
Language Models [32.95155349925248]
本稿では,外部観測から推論プロセスを取り除き,トークン消費量を大幅に削減するモジュラーパラダイムReWOOを提案する。
マルチステップ推論ベンチマークであるHotpotQAにおいて,ReWOOは5倍のトークン効率と4%の精度向上を実現している。
本稿では,175B GPT3.5から7B LLaMAへの推論能力をオフロードし,真に効率的でスケーラブルなALMシステムの可能性を示す。
論文 参考訳(メタデータ) (2023-05-23T00:16:48Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
事前訓練された大言語モデル(LLM)は、世界に関する手続き的な知識をキャプチャする。
Plan, Eliminate, and Track (PET)フレームワークはタスク記述をハイレベルなサブタスクのリストに変換する。
PETフレームワークは、人間の目標仕様への一般化のために、SOTAよりも15%改善されている。
論文 参考訳(メタデータ) (2023-05-03T20:11:22Z) - Mixture of Soft Prompts for Controllable Data Generation [21.84489422361048]
直接予測ではなく,データ拡張のためのツールとして,ソフトプロンプトの混合(MSP)を提案する。
提案手法は, 強いベースラインと比較した場合の3つのベンチマークに対して, 最先端の結果を得る。
論文 参考訳(メタデータ) (2023-03-02T21:13:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。