論文の概要: WaterMax: breaking the LLM watermark detectability-robustness-quality
trade-off
- arxiv url: http://arxiv.org/abs/2403.04808v1
- Date: Wed, 6 Mar 2024 10:55:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 22:05:26.297167
- Title: WaterMax: breaking the LLM watermark detectability-robustness-quality
trade-off
- Title(参考訳): WaterMax: LLMの透かし検出性-腐食性-品質トレードオフを破る
- Authors: Eva Giboulot and Furon Teddy
- Abstract要約: WaterMaxは、元のLLMの生成されたテキストの品質を維持しながら、高い検出性を享受する。
WaterMaxは、文献の透かし技術とは対照的に、堅牢性と複雑さのバランスをとる。
最も完全なベンチマークスイートの下では、すべてのSotAテクニックを上回ります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Watermarking is a technical means to dissuade malfeasant usage of Large
Language Models. This paper proposes a novel watermarking scheme, so-called
WaterMax, that enjoys high detectability while sustaining the quality of the
generated text of the original LLM. Its new design leaves the LLM untouched (no
modification of the weights, logits, temperature, or sampling technique).
WaterMax balances robustness and complexity contrary to the watermarking
techniques of the literature inherently provoking a trade-off between quality
and robustness. Its performance is both theoretically proven and experimentally
validated. It outperforms all the SotA techniques under the most complete
benchmark suite.
- Abstract(参考訳): ウォーターマーキングは、大規模な言語モデルの誤用を解消する技術的手段である。
本稿では,LLMの生成したテキストの品質を維持しつつ,高い検出性を実現する新しい透かし方式であるWaterMaxを提案する。
その新しいデザインは、llmに手を加えていない(重量、ロジット、温度、サンプリング技術の変更はない)。
WaterMaxは、文学の透かし技術とは対照的に、堅牢性と複雑さのバランスをとる。
その性能は理論的に証明され、実験的に検証される。
最も完全なベンチマークスイートの下では、すべてのSotAテクニックを上回ります。
関連論文リスト
- GaussMark: A Practical Approach for Structural Watermarking of Language Models [61.84270985214254]
GaussMarkは、大規模な言語モデルを透かし出すためのシンプルで効率的で比較的堅牢なスキームである。
GaussMarkは信頼性が高く、効率的で、挿入、削除、置換、ラウンドトリップ翻訳などの汚職に対して比較的堅牢であることを示す。
論文 参考訳(メタデータ) (2025-01-17T22:30:08Z) - Robust Detection of Watermarks for Large Language Models Under Human Edits [27.678152860666163]
そこで本研究では,人間の編集下での透かし検出のための不適切な良性テストの形で,新しい手法を提案する。
我々は,Gumbel-GoF透かしのロバスト検出において,Tr-GoF試験が最適性を達成することを証明した。
また, Tr-GoF試験は, 適度なテキスト修正方式において, 高い検出効率が得られることを示した。
論文 参考訳(メタデータ) (2024-11-21T06:06:04Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
この研究は、透かし付き大言語モデル(LLM)の非受容性を初めて研究したものである。
我々は、よく設計されたプロンプトを通して透かしを検出する、Water-Probeと呼ばれる識別アルゴリズムを設計する。
実験の結果、ほとんどの主流の透かしアルゴリズムは、よく設計されたプロンプトと容易に識別できることがわかった。
論文 参考訳(メタデータ) (2024-10-04T06:01:27Z) - Theoretically Grounded Framework for LLM Watermarking: A Distribution-Adaptive Approach [35.319577498993354]
大規模言語モデル(LLM)の透かしのための新しい理論的枠組みを提案する。
本手法は,最悪のType-Iエラーとテキスト歪みの制御を維持しつつ,検出性能の最大化に重点を置いている。
本稿では,Gumbel-max の手法と並行してサロゲートモデルを用いた,効率的かつモデルに依存しない分布適応型透かしアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-03T18:28:10Z) - Less is More: Sparse Watermarking in LLMs with Enhanced Text Quality [27.592486717044455]
テキストに分散した生成されたトークンの小さなサブセットに透かしを適用することで、このトレードオフを緩和することを目的とした新しいタイプの透かしであるスパース透かしを提案する。
提案手法は,従来の透かし手法よりも高い品質のテキストを生成しつつ,高い検出性を実現することを示す。
論文 参考訳(メタデータ) (2024-07-17T18:52:12Z) - Large Language Model Watermark Stealing With Mixed Integer Programming [51.336009662771396]
大きな言語モデル(LLM)の透かしは、著作権に対処し、AI生成したテキストを監視し、その誤用を防ぐことを約束している。
近年の研究では、多数のキーを用いた透かし手法は、攻撃の除去に影響を受けやすいことが示されている。
我々は,最先端のLLM透かしスキームに対する新たなグリーンリスト盗難攻撃を提案する。
論文 参考訳(メタデータ) (2024-05-30T04:11:17Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
本研究では,認知科学レンズを用いた大規模言語モデル(LLM)の異なる機能に対する透かしの効果を評価する。
透かしをシームレスに統合するための相互排他型透かし(WatME)を導入する。
論文 参考訳(メタデータ) (2023-11-16T11:58:31Z) - Turning Your Strength into Watermark: Watermarking Large Language Model via Knowledge Injection [66.26348985345776]
本稿では,知識注入に基づく大規模言語モデル(LLM)のための新しい透かし手法を提案する。
透かし埋め込みの段階では、まず選択した知識に透かしを埋め込んで、透かし付き知識を得る。
透かし抽出段階では、疑わしいLLMを問うために、透かし付き知識に関する質問を設計する。
実験により, 透かし抽出の成功率は100%近くであり, 提案手法の有効性, 忠実性, ステルス性, 堅牢性を示した。
論文 参考訳(メタデータ) (2023-11-16T03:22:53Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
本研究では, モデル生成出力の品質に及ぼす透かしの影響について検討した。
出力確率分布に影響を与えることなく、透かしを統合することができる。
ウォーターマークの存在は、下流タスクにおけるモデルの性能を損なうものではない。
論文 参考訳(メタデータ) (2023-09-22T12:46:38Z) - Provable Robust Watermarking for AI-Generated Text [41.5510809722375]
We propose a robust and high-quality watermark method, Unigram-Watermark。
提案手法は,テキストの編集やパラフレージングに頑健で,生成品質,透かし検出の精度が保証されていることを実証する。
論文 参考訳(メタデータ) (2023-06-30T07:24:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。