Stability of quasicrystalline ultracold fermions to dipolar interactions
- URL: http://arxiv.org/abs/2403.04830v2
- Date: Thu, 15 Aug 2024 18:00:00 GMT
- Title: Stability of quasicrystalline ultracold fermions to dipolar interactions
- Authors: Paolo Molignini,
- Abstract summary: We study repulsive ultracold dipolar fermions in a quasiperiodic optical lattice to characterize the behavior of interacting quasicrystals.
Our work shows that dipolar interactions in a quasiperiodic potential can give rise to a complex, tuneable coexistence of localized and extended quantum states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quasiperiodic potentials can be used to interpolate between localization and delocalization in one dimension. With the rise of optical platforms engineering dipolar interactions, a key question is the stability of quasicrystalline phases under these long-range interactions. In this work, we study repulsive ultracold dipolar fermions in a quasiperiodic optical lattice to characterize the behavior of interacting quasicrystals. We simulate the full time evolution of the typical experimental protocols used to probe quasicrystalline order and localization properties. We extract experimentally measurable dynamical observables and correlation functions to characterize the three phases observed in the noninteracting setting: localized, intermediate, and extended. We then study the stability of such phases to repulsive dipolar interactions. We find that dipolar interactions can completely alter the shape of the phase diagram by stabilizing the intermediate phase, mostly at the expense of the extended phase. Moreover, in the strongly interacting regime, a resonance-like behavior characterized by density oscillations appears. Remarkably, strong dipolar repulsions can also localize particles even in the absence of quasiperiodicity if the primary lattice is sufficiently deep. Our work shows that dipolar interactions in a quasiperiodic potential can give rise to a complex, tuneable coexistence of localized and extended quantum states.
Related papers
- Super-Tonks-Girardeau quench of dipolar bosons in a one-dimensional
optical lattice [0.0]
We simulate a super-Tonks-Girardeau quench on dipolar bosons in a one-dimensional optical lattice.
By calculating particle density, correlations, entropy measures, and natural occupations, we establish the regimes of stability as a function of dipolar interaction strength.
Our study highlights the potential of long-range interactions to explore new mechanisms to steer and stabilize excited quantum states of matter.
arXiv Detail & Related papers (2024-01-18T19:00:00Z) - Quantum phases of hardcore bosons with repulsive dipolar density-density interactions on two-dimensional lattices [0.0]
bosons dynamics is described by the extended-Bose-Hubbard Hamiltonian on a two-dimensional lattice.
We consider three different lattice geometries: square, honeycomb, and triangular.
Our results are of immediate relevance for experimental realisations of self-organised crystalline ordering patterns in analogue quantum simulators.
arXiv Detail & Related papers (2023-11-17T16:35:02Z) - Bosonic Delocalization of Dipolar Moir\'e Excitons [0.0]
tunable moir'e potentials emerge, trapping excitons into periodic arrays.
Recent experiments have demonstrated density-dependent transport properties of moir'e excitons.
We develop a microscopic theory of interacting excitons in external potentials.
arXiv Detail & Related papers (2023-06-01T09:06:33Z) - Exploring phonon-like interactions in one-dimensional Bose-Fermi
mixtures [0.0]
We investigate a cold atomic Bose-Fermi mixture confined in an optical lattice potential solely affecting the bosons.
Under attractive Bose-Fermi interaction, the insulating phase may adopt a fermionic wedding-cake-like configuration.
For repulsive interaction, the trap destabilizes the Peierls phase, causing the two species to separate.
arXiv Detail & Related papers (2023-03-13T13:08:02Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Realization of a density-dependent Peierls phase in a synthetic,
spin-orbit coupled Rydberg system [0.13107669223114085]
We experimentally realize a Peierls phase in the hopping amplitude of excitations carried by Rydberg atoms.
We observe the resulting characteristic chiral motion in a minimal setup of three sites.
arXiv Detail & Related papers (2020-01-28T14:29:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.