Exploring phonon-like interactions in one-dimensional Bose-Fermi
mixtures
- URL: http://arxiv.org/abs/2303.07083v2
- Date: Thu, 15 Feb 2024 22:52:42 GMT
- Title: Exploring phonon-like interactions in one-dimensional Bose-Fermi
mixtures
- Authors: Axel Gagge, Th. K. Mavrogordatos, and Jonas Larson
- Abstract summary: We investigate a cold atomic Bose-Fermi mixture confined in an optical lattice potential solely affecting the bosons.
Under attractive Bose-Fermi interaction, the insulating phase may adopt a fermionic wedding-cake-like configuration.
For repulsive interaction, the trap destabilizes the Peierls phase, causing the two species to separate.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: With the objective of simulating the physical behavior of electrons in a
dynamic background, we investigate a cold atomic Bose-Fermi mixture confined in
an optical lattice potential solely affecting the bosons. The bosons, residing
in the deep superfluid regime, inherit the periodicity of the optical lattice,
subsequently serving as a dynamic potential for the polarized fermions. Owing
to the atom-phonon interaction between the fermions and the condensate, the
coupled system exhibits a Berezinskii-Kosterlitz-Thouless transition from a
Luttinger liquid to a Peierls phase. However, under sufficiently strong
Bose-Fermi interaction, the Peierls phase loses stability, leading to either a
collapsed or a separated phase. We find that the primary function of the
optical lattice is to stabilize the Peierls phase. Furthermore, the presence of
a confining harmonic trap induces a diverse physical behavior, surpassing what
is observed for either bosons or fermions individually trapped. Notably, under
attractive Bose-Fermi interaction, the insulating phase may adopt a fermionic
wedding-cake-like configuration, reflecting the dynamic nature of the
underlying lattice potential. Conversely, for repulsive interaction, the trap
destabilizes the Peierls phase, causing the two species to separate.
Related papers
- Density-wave-type supersolid of two-dimensional tilted dipolar bosons [0.6562256987706128]
We predict a stable density-waves-type supersolid phase of a dilute gas of tilted dipolar bosons in a two-dimensional (2D) geometry.
This many-body phase is manifested by the formation of the stripe pattern and elasticity coexisting together with the Bose-Einstein condensation and superfluidity at zero temperature.
The predicted supersolid effect can be realized in a variety of experimental setups ranging from excitons in heterostructures to cold atoms and polar molecules in optical potentials.
arXiv Detail & Related papers (2023-12-04T08:15:03Z) - Feshbach resonances of composite charge carrier states in atomically
thin semiconductor heterostructures [0.0]
tunneling-induced layer hybridization can lead to the emergence of two distinct classes of Feshbach resonances in atomically thin semiconductors.
Based on microscopic scattering theory we show that these two types of Feshbach resonances allow to tune interactions between electrons and both short-lived intralayer, as well as long-lived interlayer excitons.
arXiv Detail & Related papers (2023-10-12T21:33:11Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Kagome qubit ice [55.73970798291771]
Topological phases of spin liquids with constrained disorder can host a kinetics of fractionalized excitations.
We present a realization of kagome spin ice in the superconducting qubits of a quantum annealer.
We show evidence of both the Ice-I phase and an unconventional field-induced Ice-II phase.
arXiv Detail & Related papers (2023-01-04T23:46:48Z) - Phase diagram of Rydberg-dressed atoms on two-leg triangular ladders [50.591267188664666]
We investigate the phase diagram of hard-core bosons in a triangular ladder with next-to-nearest-neighbor interaction along each leg.
For weak interactions, Abelian bosonization predicts a spin density wave and a fully gapless Luttinger liquid phase.
The competition with the zigzag interaction generates a charge density wave, a 'polarized holonic' phase, and a crystalline phase at the filling 2/5.
arXiv Detail & Related papers (2022-07-01T12:49:04Z) - Floquet-heating-induced Bose condensation in a scar-like mode of an open
driven optical-lattice system [62.997667081978825]
We show that the interplay of bath-induced dissipation and controlled Floquet heating can give rise to non-equilibrium Bose condensation.
Our predictions are based on a microscopic model that is solved using kinetic equations of motion derived from Floquet-Born-Markov theory.
arXiv Detail & Related papers (2022-04-14T17:56:03Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Polarizing the Medium: Fermion-Mediated Interactions between Bosons [0.0]
We construct the phase diagram spanned by boson-fermion mass ratio and boson-fermion scattering parameter.
In stable mixing phase, the collective long-behaved excitations can either be well-behaved with infinite lifetime or be finite in lifetime suffered from Landau damping.
arXiv Detail & Related papers (2020-07-01T12:09:12Z) - BEC immersed in a Fermi sea: Theory of static and dynamic behavior
across phase separation [1.7990829163162367]
We study the static and dynamic behavior of a BEC immersed in a large Fermi sea of ultracold atoms under conditions of tunable interspecies interaction.
We develop mean-field models to simulate the system over a wide range of repulsion strength.
We show that the mediated interaction between bosons induced by the Fermi sea can be understood as an adiabatic second-order mean-field effect.
arXiv Detail & Related papers (2020-04-17T15:03:27Z) - Parallel dark soliton pair in a bistable 2D exciton-polariton superfluid [47.187609203210705]
2D dark solitons are unstable and collapse into vortices due to snake instabilities.
We demonstrate that a pair of dark solitons can be formed in the wake of an obstacle in a polariton flow resonantly supported by a homogeneous laser beam.
arXiv Detail & Related papers (2020-03-25T13:52:22Z) - Effective p-wave Fermi-Fermi Interaction Induced by Bosonic Superfluids [8.5232177031029]
We study the two-dimensional Bose-Fermi mixture on square lattice at finite temperature.
We find the emergence of the composite fermion pairs at low temperatures.
arXiv Detail & Related papers (2020-01-02T13:03:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.