Catalysis in Action via Elementary Thermal Operations
- URL: http://arxiv.org/abs/2209.15213v2
- Date: Sun, 1 Oct 2023 14:16:25 GMT
- Title: Catalysis in Action via Elementary Thermal Operations
- Authors: Jeongrak Son and Nelly H. Y. Ng
- Abstract summary: We investigate in the framework of elementary thermal operations, leveraging the distinct features of such operations to illuminate catalytic dynamics.
We establish new technical tools that enhance the computability of state transition rules for elementary thermal operations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate catalysis in the framework of elementary thermal operations,
leveraging the distinct features of such operations to illuminate catalytic
dynamics. As groundwork, we establish new technical tools that enhance the
computability of state transition rules for elementary thermal operations.
Specifically, we provide a complete characterisation of state transitions for a
qutrit system and special classes of initial states of arbitrary dimension. By
employing these tools in conjunction with numerical methods, we find that by
adopting a small catalyst, including just a qubit catalyst, one can
significantly enlarge the set of state transitions for a qutrit system. This
advancement notably narrows the gap of reachable states between elementary
thermal operations and generic thermal operations. Furthermore, we decompose
catalytic transitions into time-resolved evolution, which critically enables
the tracking of nonequilibrium free energy exchanges between the system and
bath. Our results provide evidence for the existence of simple and practicable
catalytic advantage in thermodynamics while offering insight into analysing the
mechanism of catalytic processes.
Related papers
- Finite-size catalysis in quantum resource theories [1.1510009152620668]
Quantum, the ability to enable previously impossible transformations by using auxiliary systems without degrading them, has emerged as a powerful tool in various resource theories.
We show how one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
Notably, we discover a fascinating phenomenon of catalytic resonance: tailoring the catalysts's state, one can drastically reduce the required dimension of the catalyst thus enabling efficient catalytic transformations with minimal resources.
arXiv Detail & Related papers (2024-05-14T19:08:55Z) - Catalytic transformations for thermal operations [0.0]
This work focuses on transformations between energy-incoherent states under the most general energy-conserving interactions among the system, the catalyst, and a thermal environment.
The sole constraint is that the catalyst must return unperturbed and uncorrelated with the other subsystems.
arXiv Detail & Related papers (2024-03-07T19:00:31Z) - Catalytic and asymptotic equivalence for quantum entanglement [68.8204255655161]
Many-copy entanglement manipulation procedures allow for highly entangled pure states from noisy states.
We show that using an entangled catalyst cannot enhance the singlet distillation rate of a distillable quantum state.
Our findings provide a comprehensive understanding of the capabilities and limitations of both catalytic and state transformations of entangled states.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - No-go theorem for entanglement distillation using catalysis [49.24817625059456]
We show that catalytic transformations can never allow for the distillation of entanglement from a bound entangled state.
This precludes the possibility that entanglement theoryally reversible based operations under even permissive choices.
arXiv Detail & Related papers (2023-05-05T12:57:59Z) - A hierarchy of thermal processes collapses under catalysis [0.0]
We show that free states within thermal operations can act as catalysts that provide the necessary non-Markovianity for simpler operations.
Our results extend to scenarios involving initial states with coherence in the energy eigenbasis.
arXiv Detail & Related papers (2023-03-23T03:59:06Z) - Controlling local thermal states in classical many-body systems [77.34726150561087]
We lay the theoretical foundations for the active control of local thermal states in arbitrary non-reciprocal systems.
We consider several representative examples in the context of systems exchanging heat radiatively.
arXiv Detail & Related papers (2022-08-19T07:08:19Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Catalytic Gaussian thermal operations [0.26249027950824505]
We study the problem of state transformations in the framework of Gaussian thermal resource theory in the presence of catalysts.
We show that strong catalysts are useless for the single mode case, in that they do not expand the set of states reachable from a given initial state.
We derive necessary conditions for transformations holding for any number of modes, for strong catalysts and approximate transformations, and for weak catalysts with and without a thermal bath.
arXiv Detail & Related papers (2021-12-10T13:47:08Z) - Collective effects on the performance and stability of quantum heat
engines [62.997667081978825]
Recent predictions for quantum-mechanical enhancements in the operation of small heat engines have raised renewed interest.
One essential question is whether collective effects may help to carry enhancements over larger scales.
We study how power, efficiency and constancy scale with the number of spins composing the engine.
arXiv Detail & Related papers (2021-06-25T18:00:07Z) - Catalytic Transformations of Pure Entangled States [62.997667081978825]
Entanglement entropy is the von Neumann entropy of quantum entanglement of pure states.
The relation between entanglement entropy and entanglement distillation has been known only for the setting, and the meaning of entanglement entropy in the single-copy regime has so far remained open.
Our results imply that entanglement entropy quantifies the amount of entanglement available in a bipartite pure state to be used for quantum information processing, giving results an operational meaning also in entangled single-copy setup.
arXiv Detail & Related papers (2021-02-22T16:05:01Z) - Catalytic transformations with finite-size environments: applications to
cooling and thermometry [0.0]
We study catalytic transformations that cannot be achieved when a system exclusively interacts with a finite environment.
We show that catalytic cooling is always possible if the dimension of the catalyst is sufficiently large.
In a multiqubit setup catalytic cooling outperforms standard (non-catalytic) cooling using higher order interactions.
arXiv Detail & Related papers (2020-10-18T19:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.