論文の概要: StereoDiffusion: Training-Free Stereo Image Generation Using Latent Diffusion Models
- arxiv url: http://arxiv.org/abs/2403.04965v2
- Date: Sun, 2 Jun 2024 14:31:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-04 16:08:41.860734
- Title: StereoDiffusion: Training-Free Stereo Image Generation Using Latent Diffusion Models
- Title(参考訳): ステレオ拡散:潜在拡散モデルを用いた訓練不要ステレオ画像生成
- Authors: Lezhong Wang, Jeppe Revall Frisvad, Mark Bo Jensen, Siavash Arjomand Bigdeli,
- Abstract要約: StereoDiffusionを紹介します。これは、無償でトレーニングし、驚くほど簡単に使用でき、元のStable Diffusionモデルにシームレスに統合する手法です。
提案手法は,ステレオ画像ペアを高速に生成するためのエンドツーエンドで軽量な機能を実現するために潜時変数を変更する。
提案手法はステレオ生成プロセスを通じて画像品質の基準を高く維持し,様々な定量的評価を行う。
- 参考スコア(独自算出の注目度): 2.9260206957981167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for stereo images increases as manufacturers launch more XR devices. To meet this demand, we introduce StereoDiffusion, a method that, unlike traditional inpainting pipelines, is trainning free, remarkably straightforward to use, and it seamlessly integrates into the original Stable Diffusion model. Our method modifies the latent variable to provide an end-to-end, lightweight capability for fast generation of stereo image pairs, without the need for fine-tuning model weights or any post-processing of images. Using the original input to generate a left image and estimate a disparity map for it, we generate the latent vector for the right image through Stereo Pixel Shift operations, complemented by Symmetric Pixel Shift Masking Denoise and Self-Attention Layers Modification methods to align the right-side image with the left-side image. Moreover, our proposed method maintains a high standard of image quality throughout the stereo generation process, achieving state-of-the-art scores in various quantitative evaluations.
- Abstract(参考訳): メーカーがより多くのXRデバイスを発売するにつれて、ステレオ画像の需要が高まっている。
この要求を満たすために、従来の塗装パイプラインとは違って、自由で、驚くほど簡単に使用可能なトレーニングを行う方法であるStereoDiffusionを導入し、元のStable Diffusionモデルにシームレスに統合します。
提案手法は, モデル重み付けや後処理を必要とせず, ステレオ画像ペアを高速に生成するための, エンドツーエンドで軽量な機能を実現するために潜時変数を変更する。
元の入力を用いて左画像を生成し,その差分マップを推定し,左右の画像を左右に整列させるSymmetric Pixel Shift Masking DenoiseとSelf-Attention Layers Modification法で補完した,ステレオPixel Shift操作により右画像の潜時ベクトルを生成する。
さらに,提案手法はステレオ生成プロセスを通じて画像品質の基準を高く維持し,様々な定量的評価を行う。
関連論文リスト
- Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder [29.924160271522354]
超解像度(SR)と画像生成はコンピュータビジョンにおいて重要なタスクであり、現実世界のアプリケーションで広く採用されている。
しかし、既存のほとんどの手法は、固定スケールの倍率でのみ画像を生成し、過度なスムーシングやアーティファクトに悩まされている。
最も関連する研究は、インプリシット神経表現(INR)をデノナイズ拡散モデルに適用し、連続分解能で多種多様で高品質なSR結果を得た。
任意のスケールで入力画像の超解像やランダムノイズから生成できる新しいパイプラインを提案する。
論文 参考訳(メタデータ) (2024-03-15T12:45:40Z) - Content-aware Masked Image Modeling Transformer for Stereo Image Compression [15.819672238043786]
本稿では,CAMSICというステレオ画像圧縮フレームワークを提案する。
CAMSICは各画像を潜在表現に変換し、強力なデコーダフリートランスフォーマーエントロピーモデルを用いる。
実験により,本フレームワークは2つのステレオ画像データセット上で,最先端の速度歪み性能を実現することが示された。
論文 参考訳(メタデータ) (2024-03-13T13:12:57Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
提案手法は, 画像の全体的な品質とセマンティックコヒーレンスを, 計算オーバーヘッドを10%加えるだけで一貫的に改善できることを示す。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - FreePIH: Training-Free Painterly Image Harmonization with Diffusion
Model [19.170302996189335]
我々のFreePIH法は,フォアグラウンド画像スタイル転送のためのプラグインモジュールとしてデノナイズプロセスを利用する。
我々は,潜伏空間における前景オブジェクトの内容と安定性の整合性を強制するために,マルチスケール機能を活用している。
我々の手法は、代表的基準を大きなマージンで超えることができる。
論文 参考訳(メタデータ) (2023-11-25T04:23:49Z) - Gradpaint: Gradient-Guided Inpainting with Diffusion Models [71.47496445507862]
Denoising Diffusion Probabilistic Models (DDPM) は近年,条件付きおよび非条件付き画像生成において顕著な成果を上げている。
我々はGradPaintを紹介し、グローバルな一貫性のあるイメージに向けて世代を操る。
我々は、様々なデータセットで訓練された拡散モデルによく適応し、現在最先端の教師付きおよび教師なしの手法を改善している。
論文 参考訳(メタデータ) (2023-09-18T09:36:24Z) - Real-World Image Variation by Aligning Diffusion Inversion Chain [53.772004619296794]
生成した画像と実世界の画像の間にはドメインギャップがあり、これは実世界の画像の高品質なバリエーションを生成する上での課題である。
実世界画像のアライメントによる変化(RIVAL)と呼ばれる新しい推論パイプラインを提案する。
我々のパイプラインは、画像生成プロセスとソース画像の反転チェーンを整列させることにより、画像の変動の生成品質を向上させる。
論文 参考訳(メタデータ) (2023-05-30T04:09:47Z) - MaskSketch: Unpaired Structure-guided Masked Image Generation [56.88038469743742]
MaskSketchは、サンプリング中の余分な条件信号としてガイドスケッチを使用して生成結果の空間的条件付けを可能にする画像生成方法である。
マスク付き生成変換器の中間自己アテンションマップが入力画像の重要な構造情報を符号化していることを示す。
以上の結果から,MaskSketchは誘導構造に対する高画像リアリズムと忠実性を実現する。
論文 参考訳(メタデータ) (2023-02-10T20:27:02Z) - Deep Uncalibrated Photometric Stereo via Inter-Intra Image Feature
Fusion [17.686973510425172]
本稿では, 深部非校正光度ステレオの新しい手法を提案する。
画像間表現を効率的に利用し、正規推定を導出する。
本手法は, 合成データと実データの両方において, 最先端の手法よりも有意に優れた結果が得られる。
論文 参考訳(メタデータ) (2022-08-06T03:59:54Z) - Semantic Image Synthesis via Diffusion Models [159.4285444680301]
Denoising Diffusion Probabilistic Models (DDPM) は様々な画像生成タスクにおいて顕著な成功を収めた。
セマンティック画像合成に関する最近の研究は、主に「GAN(Generative Adversarial Nets)」に追従している。
論文 参考訳(メタデータ) (2022-06-30T18:31:51Z) - Recursive Self-Improvement for Camera Image and Signal Processing
Pipeline [6.318974730864278]
現在のカメラ画像と信号処理パイプライン(ISP)は、画像全体に一様に適用される単一のフィルタを適用する傾向がある。
これは、ほとんどの取得したカメラ画像が空間的に異質なアーティファクトを持っているにもかかわらずである。
学習された潜在部分空間で動作する深層強化学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-15T02:23:40Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。