Private Count Release: A Simple and Scalable Approach for Private Data Analytics
- URL: http://arxiv.org/abs/2403.05073v1
- Date: Fri, 8 Mar 2024 05:55:16 GMT
- Title: Private Count Release: A Simple and Scalable Approach for Private Data Analytics
- Authors: Ryan Rogers,
- Abstract summary: We present a data analytics system that ensures accurate counts can be released with differential privacy.
Our proposal does not rely on user contribution bounds over distinct elements.
- Score: 1.5773159234875098
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a data analytics system that ensures accurate counts can be released with differential privacy and minimal onboarding effort while showing instances that outperform other approaches that require more onboarding effort. The primary difference between our proposal and existing approaches is that it does not rely on user contribution bounds over distinct elements, i.e. $\ell_0$-sensitivity bounds, which can significantly bias counts. Contribution bounds for $\ell_0$-sensitivity have been considered as necessary to ensure differential privacy, but we show that this is actually not necessary and can lead to releasing more results that are more accurate. We require minimal hyperparameter tuning and demonstrate results on several publicly available dataset. We hope that this approach will help differential privacy scale to many different data analytics applications.
Related papers
- Distributed, communication-efficient, and differentially private estimation of KL divergence [15.294136011320433]
Key task in managing distributed, sensitive data is to measure the extent to which a distribution changes.
We describe novel algorithmic approaches for estimating the KL divergence of data across federated models of computation, under differential privacy.
arXiv Detail & Related papers (2024-11-25T15:20:40Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
Data-dependent privacy accounting frameworks such as per-instance differential privacy (pDP) and Fisher information loss (FIL) confer fine-grained privacy guarantees for individuals in a fixed training dataset.
We propose simple modifications of the Gaussian mechanism with bounded support, showing that they amplify privacy guarantees under data-dependent accounting.
arXiv Detail & Related papers (2024-03-07T21:22:07Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
We study the space complexity of the two related fields of differential privacy and adaptive data analysis.
We show that there exists a problem P that requires exponentially more space to be solved efficiently with differential privacy.
The line of work on adaptive data analysis focuses on understanding the number of samples needed for answering a sequence of adaptive queries.
arXiv Detail & Related papers (2023-02-11T14:45:31Z) - On the Statistical Complexity of Estimation and Testing under Privacy Constraints [17.04261371990489]
We show how to characterize the power of a statistical test under differential privacy in a plug-and-play fashion.
We show that maintaining privacy results in a noticeable reduction in performance only when the level of privacy protection is very high.
Finally, we demonstrate that the DP-SGLD algorithm, a private convex solver, can be employed for maximum likelihood estimation with a high degree of confidence.
arXiv Detail & Related papers (2022-10-05T12:55:53Z) - Smooth Anonymity for Sparse Graphs [69.1048938123063]
differential privacy has emerged as the gold standard of privacy, however, when it comes to sharing sparse datasets.
In this work, we consider a variation of $k$-anonymity, which we call smooth-$k$-anonymity, and design simple large-scale algorithms that efficiently provide smooth-$k$-anonymity.
arXiv Detail & Related papers (2022-07-13T17:09:25Z) - Individual Privacy Accounting for Differentially Private Stochastic Gradient Descent [69.14164921515949]
We characterize privacy guarantees for individual examples when releasing models trained by DP-SGD.
We find that most examples enjoy stronger privacy guarantees than the worst-case bound.
This implies groups that are underserved in terms of model utility simultaneously experience weaker privacy guarantees.
arXiv Detail & Related papers (2022-06-06T13:49:37Z) - Learning with User-Level Privacy [61.62978104304273]
We analyze algorithms to solve a range of learning tasks under user-level differential privacy constraints.
Rather than guaranteeing only the privacy of individual samples, user-level DP protects a user's entire contribution.
We derive an algorithm that privately answers a sequence of $K$ adaptively chosen queries with privacy cost proportional to $tau$, and apply it to solve the learning tasks we consider.
arXiv Detail & Related papers (2021-02-23T18:25:13Z) - Robust and Differentially Private Mean Estimation [40.323756738056616]
Differential privacy has emerged as a standard requirement in a variety of applications ranging from the U.S. Census to data collected in commercial devices.
An increasing number of such databases consist of data from multiple sources, not all of which can be trusted.
This leaves existing private analyses vulnerable to attacks by an adversary who injects corrupted data.
arXiv Detail & Related papers (2021-02-18T05:02:49Z) - Hiding Among the Clones: A Simple and Nearly Optimal Analysis of Privacy
Amplification by Shuffling [49.43288037509783]
We show that random shuffling amplifies differential privacy guarantees of locally randomized data.
Our result is based on a new approach that is simpler than previous work and extends to approximate differential privacy with nearly the same guarantees.
arXiv Detail & Related papers (2020-12-23T17:07:26Z) - Individual Privacy Accounting via a Renyi Filter [33.65665839496798]
We give a method for tighter privacy loss accounting based on the value of a personalized privacy loss estimate for each individual.
Our filter is simpler and tighter than the known filter for $(epsilon,delta)$-differential privacy by Rogers et al.
arXiv Detail & Related papers (2020-08-25T17:49:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.