Efficient Data Collection for Robotic Manipulation via Compositional Generalization
- URL: http://arxiv.org/abs/2403.05110v2
- Date: Tue, 21 May 2024 14:18:47 GMT
- Title: Efficient Data Collection for Robotic Manipulation via Compositional Generalization
- Authors: Jensen Gao, Annie Xie, Ted Xiao, Chelsea Finn, Dorsa Sadigh,
- Abstract summary: We show that policies can compose environmental factors from their data to succeed when encountering unseen factor combinations.
We propose better in-domain data collection strategies that exploit composition.
We provide videos at http://iliad.stanford.edu/robot-data-comp/.
- Score: 70.76782930312746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data collection has become an increasingly important problem in robotic manipulation, yet there still lacks much understanding of how to effectively collect data to facilitate broad generalization. Recent works on large-scale robotic data collection typically vary many environmental factors of variation (e.g., object types, table textures) during data collection, to cover a diverse range of scenarios. However, they do not explicitly account for the possible compositional abilities of policies trained on the data. If robot policies can compose environmental factors from their data to succeed when encountering unseen factor combinations, we can exploit this to avoid collecting data for situations that composition would address. To investigate this possibility, we conduct thorough empirical studies both in simulation and on a real robot that compare data collection strategies and assess whether visual imitation learning policies can compose environmental factors. We find that policies do exhibit composition, although leveraging prior robotic datasets is critical for this on a real robot. We use these insights to propose better in-domain data collection strategies that exploit composition, which can induce better generalization than naive approaches for the same amount of effort during data collection. We further demonstrate that a real robot policy trained on data from such a strategy achieves a success rate of 77.5% when transferred to entirely new environments that encompass unseen combinations of environmental factors, whereas policies trained using data collected without accounting for environmental variation fail to transfer effectively, with a success rate of only 2.5%. We provide videos at http://iliad.stanford.edu/robot-data-comp/.
Related papers
- Re-Mix: Optimizing Data Mixtures for Large Scale Imitation Learning [25.359270812682155]
We investigate how to weigh different subsets or domains'' of robotics datasets for robot foundation model pre-training.
Our method, Re-Mix, addresses the wide range of challenges that arise when applying DRO to robotics datasets.
arXiv Detail & Related papers (2024-08-26T06:14:25Z) - PoCo: Policy Composition from and for Heterogeneous Robot Learning [44.1315170137613]
Current methods usually collect and pool all data from one domain to train a single policy.
We present a flexible approach, dubbed Policy Composition, to combine information across diverse modalities and domains.
Our method can use task-level composition for multi-task manipulation and be composed with analytic cost functions to adapt policy behaviors at inference time.
arXiv Detail & Related papers (2024-02-04T14:51:49Z) - Robot Fleet Learning via Policy Merging [58.5086287737653]
We propose FLEET-MERGE to efficiently merge policies in the fleet setting.
We show that FLEET-MERGE consolidates the behavior of policies trained on 50 tasks in the Meta-World environment.
We introduce a novel robotic tool-use benchmark, FLEET-TOOLS, for fleet policy learning in compositional and contact-rich robot manipulation tasks.
arXiv Detail & Related papers (2023-10-02T17:23:51Z) - BridgeData V2: A Dataset for Robot Learning at Scale [73.86688388408021]
BridgeData V2 is a large and diverse dataset of robotic manipulation behaviors.
It contains 60,096 trajectories collected across 24 environments on a publicly available low-cost robot.
arXiv Detail & Related papers (2023-08-24T17:41:20Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
arXiv Detail & Related papers (2023-07-07T17:21:16Z) - Bridge Data: Boosting Generalization of Robotic Skills with Cross-Domain
Datasets [122.85598648289789]
We study how multi-domain and multi-task datasets can improve the learning of new tasks in new environments.
We also find that data for only a few tasks in a new domain can bridge the domain gap and make it possible for a robot to perform a variety of prior tasks that were only seen in other domains.
arXiv Detail & Related papers (2021-09-27T23:42:12Z) - Efficient Self-Supervised Data Collection for Offline Robot Learning [17.461103383630853]
A practical approach to robot reinforcement learning is to first collect a large batch of real or simulated robot interaction data.
We develop a simple-yet-effective goal-conditioned reinforcement-learning method that actively focuses data collection on novel observations.
arXiv Detail & Related papers (2021-05-10T18:42:58Z) - COG: Connecting New Skills to Past Experience with Offline Reinforcement
Learning [78.13740204156858]
We show that we can reuse prior data to extend new skills simply through dynamic programming.
We demonstrate the effectiveness of our approach by chaining together several behaviors seen in prior datasets for solving a new task.
We train our policies in an end-to-end fashion, mapping high-dimensional image observations to low-level robot control commands.
arXiv Detail & Related papers (2020-10-27T17:57:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.