論文の概要: On Protecting the Data Privacy of Large Language Models (LLMs): A Survey
- arxiv url: http://arxiv.org/abs/2403.05156v2
- Date: Thu, 14 Mar 2024 14:17:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-17 13:47:35.115323
- Title: On Protecting the Data Privacy of Large Language Models (LLMs): A Survey
- Title(参考訳): 大規模言語モデル(LLM)のデータプライバシ保護に関する調査
- Authors: Biwei Yan, Kun Li, Minghui Xu, Yueyan Dong, Yue Zhang, Zhaochun Ren, Xiuzhen Cheng,
- Abstract要約: LLM(Large Language Model)は、人間の言語を理解し、生成し、翻訳できる複雑な人工知能システムである。
LLMは大量のデータを処理して生成し、データプライバシを脅かす可能性がある。
- 参考スコア(独自算出の注目度): 35.48984524483533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are complex artificial intelligence systems capable of understanding, generating and translating human language. They learn language patterns by analyzing large amounts of text data, allowing them to perform writing, conversation, summarizing and other language tasks. When LLMs process and generate large amounts of data, there is a risk of leaking sensitive information, which may threaten data privacy. This paper concentrates on elucidating the data privacy concerns associated with LLMs to foster a comprehensive understanding. Specifically, a thorough investigation is undertaken to delineate the spectrum of data privacy threats, encompassing both passive privacy leakage and active privacy attacks within LLMs. Subsequently, we conduct an assessment of the privacy protection mechanisms employed by LLMs at various stages, followed by a detailed examination of their efficacy and constraints. Finally, the discourse extends to delineate the challenges encountered and outline prospective directions for advancement in the realm of LLM privacy protection.
- Abstract(参考訳): LLM(Large Language Model)は、人間の言語を理解し、生成し、翻訳できる複雑な人工知能システムである。
大量のテキストデータを分析して言語パターンを学習し、文章、会話、要約、その他の言語タスクを実行できる。
LLMが大量のデータを処理して生成する場合、機密情報を漏洩する危険性があり、データプライバシを脅かす可能性がある。
本稿では,LLMに関連するデータプライバシの懸念を解明し,包括的理解を促進することに集中する。
具体的には、LLM内の受動的プライバシー漏洩とアクティブなプライバシ攻撃の両方を含む、データプライバシの脅威の範囲を明確化するために、徹底的な調査が実施されている。
その後,LLMが採用するプライバシ保護機構を様々な段階で評価し,その有効性と制約を詳細に検討した。
最後に、この談話は、直面した課題を明確にし、LLMプライバシ保護の領域における進歩に向けた今後の方向性を概説するものである。
関連論文リスト
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - Preserving Privacy in Large Language Models: A Survey on Current Threats and Solutions [12.451936012379319]
大規模言語モデル(LLM)は、人工知能の大幅な進歩を表し、様々な領域にまたがる応用を見つける。
トレーニングのための大規模なインターネットソースデータセットへの依存は、注目すべきプライバシー問題を引き起こす。
特定のアプリケーション固有のシナリオでは、これらのモデルをプライベートデータで微調整する必要があります。
論文 参考訳(メタデータ) (2024-08-10T05:41:19Z) - Security and Privacy Challenges of Large Language Models: A Survey [2.9480813253164535]
LLM(Large Language Models)は、テキストの生成や要約、言語翻訳、質問応答など、非常に優れた機能を示し、複数の分野に貢献している。
これらのモデルは、Jailbreak攻撃、データ中毒攻撃、Personally Identible Information(PII)漏洩攻撃など、セキュリティやプライバシ攻撃にも脆弱である。
この調査では、トレーニングデータとユーザの両方に対するLLMのセキュリティとプライバシの課題と、輸送、教育、医療といったさまざまな領域におけるアプリケーションベースのリスクについて、徹底的にレビューする。
論文 参考訳(メタデータ) (2024-01-30T04:00:54Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Beyond Memorization: Violating Privacy Via Inference with Large Language Models [2.9373912230684565]
本稿では,テキストから個人属性を推測する事前学習言語モデルの能力に関する,最初の総合的研究について述べる。
以上の結果から,現在のLCMでは,従来は達成不可能な規模で個人データを推測することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-10-11T08:32:46Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z) - Multi-step Jailbreaking Privacy Attacks on ChatGPT [47.10284364632862]
我々は,OpenAI の ChatGPT と ChatGPT によって強化された New Bing のプライバシー上の脅威について検討した。
我々は、当社の主張を裏付ける広範な実験を行い、LLMのプライバシーへの影響について論じる。
論文 参考訳(メタデータ) (2023-04-11T13:05:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。