Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation
- URL: http://arxiv.org/abs/2403.05171v2
- Date: Tue, 9 Jul 2024 13:17:36 GMT
- Title: Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation
- Authors: Xiaoying Zhang, Jean-Francois Ton, Wei Shen, Hongning Wang, Yang Liu,
- Abstract summary: Adversarial Policy Optimization (AdvPO) is a novel solution to the pervasive issue of reward over-optimization in Reinforcement Learning from Human Feedback.
In this paper, we introduce a lightweight way to quantify uncertainties in rewards, relying solely on the last layer embeddings of the reward model.
- Score: 46.61909578101735
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Adversarial Policy Optimization (AdvPO), a novel solution to the pervasive issue of reward over-optimization in Reinforcement Learning from Human Feedback (RLHF) for Large Language Models (LLMs). Over-optimization occurs when a reward model serves as an imperfect proxy for human preference, and RL-driven policy optimization erroneously exploits reward inaccuracies. In this paper, we begin by introducing a lightweight way to quantify uncertainties in rewards, relying solely on the last layer embeddings of the reward model, without the need for computationally expensive reward ensembles. AdvPO then addresses a distributionally robust optimization problem centred around the confidence interval of the reward model's predictions for policy improvement. Through comprehensive experiments on the Anthropic HH and TL;DR summarization datasets, we illustrate the efficacy of AdvPO in mitigating the overoptimization issue, consequently resulting in enhanced performance as evaluated through human-assisted evaluation.
Related papers
- Uncertainty-Penalized Direct Preference Optimization [52.387088396044206]
We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
arXiv Detail & Related papers (2024-10-26T14:24:37Z) - Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) has emerged as a pivotal tool for aligning large language models (LLMs) with human preferences.
Direct Preference Optimization (DPO) formulates RLHF as a policy optimization problem without explicitly estimating the reward function.
We propose a general Accelerated Preference Optimization (APO) framework, which unifies many existing preference optimization algorithms.
arXiv Detail & Related papers (2024-10-08T18:51:01Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Reward Model Ensembles Help Mitigate Overoptimization [7.715463015544845]
Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions.
As imperfect representations of the "true" reward, learned reward models are susceptible to overoptimization.
arXiv Detail & Related papers (2023-10-04T11:34:22Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z) - Policy Gradient Bayesian Robust Optimization for Imitation Learning [49.881386773269746]
We derive a novel policy gradient-style robust optimization approach, PG-BROIL, to balance expected performance and risk.
Results suggest PG-BROIL can produce a family of behaviors ranging from risk-neutral to risk-averse.
arXiv Detail & Related papers (2021-06-11T16:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.