Uncertainty-Penalized Direct Preference Optimization
- URL: http://arxiv.org/abs/2410.20187v1
- Date: Sat, 26 Oct 2024 14:24:37 GMT
- Title: Uncertainty-Penalized Direct Preference Optimization
- Authors: Sam Houliston, Alizée Pace, Alexander Immer, Gunnar Rätsch,
- Abstract summary: We develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes.
The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples.
We show improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
- Score: 52.387088396044206
- License:
- Abstract: Aligning Large Language Models (LLMs) to human preferences in content, style, and presentation is challenging, in part because preferences are varied, context-dependent, and sometimes inherently ambiguous. While successful, Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) are prone to the issue of proxy reward overoptimization. Analysis of the DPO loss reveals a critical need for regularization for mislabeled or ambiguous preference pairs to avoid reward hacking. In this work, we develop a pessimistic framework for DPO by introducing preference uncertainty penalization schemes, inspired by offline reinforcement learning. The penalization serves as a correction to the loss which attenuates the loss gradient for uncertain samples. Evaluation of the methods is performed with GPT2 Medium on the Anthropic-HH dataset using a model ensemble to obtain uncertainty estimates, and shows improved overall performance compared to vanilla DPO, as well as better completions on prompts from high-uncertainty chosen/rejected responses.
Related papers
- Understanding Likelihood Over-optimisation in Direct Alignment Algorithms [20.043560907227018]
Direct Alignment Algorithms (DAAs) have emerged as alternatives to online Reinforcement Learning from Human Feedback.
These algorithms aim to increase the likelihood of generating better (preferred) completions while discouraging worse (non-preferred) ones.
This work explores the relationship between completion likelihood and model performance in state-of-the-art DAAs.
arXiv Detail & Related papers (2024-10-15T15:14:22Z) - Simultaneous Reward Distillation and Preference Learning: Get You a Language Model Who Can Do Both [6.102274021710727]
Direct Reward Distillation and policy-Optimization (DRDO) is a supervised knowledge distillation-based preference alignment method.
DRDO directly mimics rewards assigned by an oracle while learning human preferences from a novel preference likelihood formulation.
Our experimental results on the Ultrafeedback and TL;DR datasets demonstrate that policies trained using DRDO surpass previous methods.
arXiv Detail & Related papers (2024-10-11T02:19:11Z) - Reward-Augmented Data Enhances Direct Preference Alignment of LLMs [63.32585910975191]
We introduce reward-conditioned Large Language Models (LLMs) that learn from the entire spectrum of response quality within the dataset.
We propose an effective yet simple data relabeling method that conditions the preference pairs on quality scores to construct a reward-augmented dataset.
arXiv Detail & Related papers (2024-10-10T16:01:51Z) - TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights [73.9088920210495]
We propose a token-level importance sampling DPO objective named TIS-DPO that assigns importance weights to each token based on its reward.
TIS-DPO significantly outperforms various baseline methods on harmlessness and helpfulness alignment and summarization tasks.
arXiv Detail & Related papers (2024-10-06T04:03:00Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.
To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.
Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Overcoming Reward Overoptimization via Adversarial Policy Optimization with Lightweight Uncertainty Estimation [46.61909578101735]
Adversarial Policy Optimization (AdvPO) is a novel solution to the pervasive issue of reward over-optimization in Reinforcement Learning from Human Feedback.
In this paper, we introduce a lightweight way to quantify uncertainties in rewards, relying solely on the last layer embeddings of the reward model.
arXiv Detail & Related papers (2024-03-08T09:20:12Z) - Statistical Rejection Sampling Improves Preference Optimization [42.57245965632205]
We introduce a novel approach to source preference data from the target optimal policy using rejection sampling.
We also propose a unified framework that enhances the loss functions used in both Sequence Likelihood (SLiC) and Direct Preference Optimization (DPO) from a preference modeling standpoint.
arXiv Detail & Related papers (2023-09-13T01:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.