Overcoming Data Inequality across Domains with Semi-Supervised Domain
Generalization
- URL: http://arxiv.org/abs/2403.05209v1
- Date: Fri, 8 Mar 2024 10:49:37 GMT
- Title: Overcoming Data Inequality across Domains with Semi-Supervised Domain
Generalization
- Authors: Jinha Park, Wonguk Cho, Taesup Kim
- Abstract summary: We propose a novel algorithm, ProUD, which can effectively learn domain-invariant features via domain-aware prototypes.
Our experiments on three different benchmark datasets demonstrate the effectiveness of ProUD.
- Score: 4.921899151930171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While there have been considerable advancements in machine learning driven by
extensive datasets, a significant disparity still persists in the availability
of data across various sources and populations. This inequality across domains
poses challenges in modeling for those with limited data, which can lead to
profound practical and ethical concerns. In this paper, we address a
representative case of data inequality problem across domains termed
Semi-Supervised Domain Generalization (SSDG), in which only one domain is
labeled while the rest are unlabeled. We propose a novel algorithm, ProUD,
which can effectively learn domain-invariant features via domain-aware
prototypes along with progressive generalization via uncertainty-adaptive
mixing of labeled and unlabeled domains. Our experiments on three different
benchmark datasets demonstrate the effectiveness of ProUD, outperforming all
baseline models including single domain generalization and semi-supervised
learning. Source code will be released upon acceptance of the paper.
Related papers
- Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - Non-stationary Domain Generalization: Theory and Algorithm [11.781050299571692]
In this paper, we study domain generalization in non-stationary environment.
We first examine the impact of environmental non-stationarity on model performance.
Then, we propose a novel algorithm based on adaptive invariant representation learning.
arXiv Detail & Related papers (2024-05-10T21:32:43Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
We introduce an unsupervised auxiliary task of learning an implicit underlying surface representation simultaneously on source and target data.
As both domains share the same latent representation, the model is forced to accommodate discrepancies between the two sources of data.
Our experiments demonstrate that our method achieves a better performance than the current state of the art, both in real-to-real and synthetic-to-real scenarios.
arXiv Detail & Related papers (2023-04-06T17:36:23Z) - Complementary Domain Adaptation and Generalization for Unsupervised
Continual Domain Shift Learning [4.921899151930171]
Unsupervised continual domain shift learning is a significant challenge in real-world applications.
We propose Complementary Domain Adaptation and Generalization (CoDAG), a simple yet effective learning framework.
Our approach is model-agnostic, meaning that it is compatible with any existing domain adaptation and generalization algorithms.
arXiv Detail & Related papers (2023-03-28T09:05:15Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - On Multi-Domain Long-Tailed Recognition, Generalization and Beyond [29.629072761463863]
Multi-Domain Long-Tailed Recognition learns from multi-domain imbalanced data.
We propose BoDA, a theoretically grounded learning strategy that tracks the upper bound of transferability statistics.
As a byproduct, BoDA establishes new state-of-the-art on Domain Generalization benchmarks, improving generalization to unseen domains.
arXiv Detail & Related papers (2022-03-17T17:59:21Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Towards Data-Free Domain Generalization [12.269045654957765]
How can knowledge contained in models trained on different source data domains be merged into a single model that generalizes well to unseen target domains?
Prior domain generalization methods typically rely on using source domain data, making them unsuitable for private decentralized data.
We propose DEKAN, an approach that extracts and fuses domain-specific knowledge from the available teacher models into a student model robust to domain shift.
arXiv Detail & Related papers (2021-10-09T11:44:05Z) - COLUMBUS: Automated Discovery of New Multi-Level Features for Domain
Generalization via Knowledge Corruption [12.555885317622131]
We address the challenging domain generalization problem, where a model trained on a set of source domains is expected to generalize well in unseen domains without exposure to their data.
We propose Columbus, a method that enforces new feature discovery via a targeted corruption of the most relevant input and multi-level representations of the data.
arXiv Detail & Related papers (2021-09-09T14:52:05Z) - Self-balanced Learning For Domain Generalization [64.99791119112503]
Domain generalization aims to learn a prediction model on multi-domain source data such that the model can generalize to a target domain with unknown statistics.
Most existing approaches have been developed under the assumption that the source data is well-balanced in terms of both domain and class.
We propose a self-balanced domain generalization framework that adaptively learns the weights of losses to alleviate the bias caused by different distributions of the multi-domain source data.
arXiv Detail & Related papers (2021-08-31T03:17:54Z) - Inferring Latent Domains for Unsupervised Deep Domain Adaptation [54.963823285456925]
Unsupervised Domain Adaptation (UDA) refers to the problem of learning a model in a target domain where labeled data are not available.
This paper introduces a novel deep architecture which addresses the problem of UDA by automatically discovering latent domains in visual datasets.
We evaluate our approach on publicly available benchmarks, showing that it outperforms state-of-the-art domain adaptation methods.
arXiv Detail & Related papers (2021-03-25T14:33:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.