Disentangling Masked Autoencoders for Unsupervised Domain Generalization
- URL: http://arxiv.org/abs/2407.07544v1
- Date: Wed, 10 Jul 2024 11:11:36 GMT
- Title: Disentangling Masked Autoencoders for Unsupervised Domain Generalization
- Authors: An Zhang, Han Wang, Xiang Wang, Tat-Seng Chua,
- Abstract summary: Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
- Score: 57.56744870106124
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain Generalization (DG), designed to enhance out-of-distribution (OOD) generalization, is all about learning invariance against domain shifts utilizing sufficient supervision signals. Yet, the scarcity of such labeled data has led to the rise of unsupervised domain generalization (UDG) - a more important yet challenging task in that models are trained across diverse domains in an unsupervised manner and eventually tested on unseen domains. UDG is fast gaining attention but is still far from well-studied. To close the research gap, we propose a novel learning framework designed for UDG, termed the Disentangled Masked Auto Encoder (DisMAE), aiming to discover the disentangled representations that faithfully reveal the intrinsic features and superficial variations without access to the class label. At its core is the distillation of domain-invariant semantic features, which cannot be distinguished by domain classifier, while filtering out the domain-specific variations (for example, color schemes and texture patterns) that are unstable and redundant. Notably, DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders, offering dynamic data manipulation and representation level augmentation capabilities. Extensive experiments on four benchmark datasets (i.e., DomainNet, PACS, VLCS, Colored MNIST) with both DG and UDG tasks demonstrate that DisMAE can achieve competitive OOD performance compared with the state-of-the-art DG and UDG baselines, which shed light on potential research line in improving the generalization ability with large-scale unlabeled data.
Related papers
- Grounding Stylistic Domain Generalization with Quantitative Domain Shift Measures and Synthetic Scene Images [63.58800688320182]
Domain Generalization is a challenging task in machine learning.
Current methodology lacks quantitative understanding about shifts in stylistic domain.
We introduce a new DG paradigm to address these risks.
arXiv Detail & Related papers (2024-05-24T22:13:31Z) - DACAD: Domain Adaptation Contrastive Learning for Anomaly Detection in Multivariate Time Series [25.434379659643707]
In time series anomaly detection, the scarcity of labeled data poses a challenge to the development of accurate models.
We propose a novel Domain Contrastive learning model for Anomaly Detection in time series (DACAD)
Our model employs supervised contrastive loss for the source domain and self-supervised contrastive triplet loss for the target domain.
arXiv Detail & Related papers (2024-04-17T11:20:14Z) - DGMamba: Domain Generalization via Generalized State Space Model [80.82253601531164]
Domain generalization(DG) aims at solving distribution shift problems in various scenes.
Mamba, as an emerging state space model (SSM), possesses superior linear complexity and global receptive fields.
We propose a novel framework for DG, named DGMamba, that excels in strong generalizability toward unseen domains.
arXiv Detail & Related papers (2024-04-11T14:35:59Z) - Make the U in UDA Matter: Invariant Consistency Learning for
Unsupervised Domain Adaptation [86.61336696914447]
We dub our approach "Invariant CONsistency learning" (ICON)
We propose to make the U in Unsupervised DA matter by giving equal status to the two domains.
ICON achieves the state-of-the-art performance on the classic UDA benchmarks: Office-Home and VisDA-2017, and outperforms all the conventional methods on the challenging WILDS 2.0 benchmark.
arXiv Detail & Related papers (2023-09-22T09:43:32Z) - On Certifying and Improving Generalization to Unseen Domains [87.00662852876177]
Domain Generalization aims to learn models whose performance remains high on unseen domains encountered at test-time.
It is challenging to evaluate DG algorithms comprehensively using a few benchmark datasets.
We propose a universal certification framework that can efficiently certify the worst-case performance of any DG method.
arXiv Detail & Related papers (2022-06-24T16:29:43Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
We design a Domain Disentanglement Faster-RCNN (DDF) to eliminate the source-specific information in the features for detection task learning.
Our DDF method facilitates the feature disentanglement at the global and local stages, with a Global Triplet Disentanglement (GTD) module and an Instance Similarity Disentanglement (ISD) module.
By outperforming state-of-the-art methods on four benchmark UDA object detection tasks, our DDF method is demonstrated to be effective with wide applicability.
arXiv Detail & Related papers (2022-01-06T05:43:01Z) - Better Pseudo-label: Joint Domain-aware Label and Dual-classifier for
Semi-supervised Domain Generalization [26.255457629490135]
We propose a novel framework via joint domain-aware labels and dual-classifier to produce high-quality pseudo-labels.
To predict accurate pseudo-labels under domain shift, a domain-aware pseudo-labeling module is developed.
Also, considering inconsistent goals between generalization and pseudo-labeling, we employ a dual-classifier to independently perform pseudo-labeling and domain generalization in the training process.
arXiv Detail & Related papers (2021-10-10T15:17:27Z) - COLUMBUS: Automated Discovery of New Multi-Level Features for Domain
Generalization via Knowledge Corruption [12.555885317622131]
We address the challenging domain generalization problem, where a model trained on a set of source domains is expected to generalize well in unseen domains without exposure to their data.
We propose Columbus, a method that enforces new feature discovery via a targeted corruption of the most relevant input and multi-level representations of the data.
arXiv Detail & Related papers (2021-09-09T14:52:05Z) - SAND-mask: An Enhanced Gradient Masking Strategy for the Discovery of
Invariances in Domain Generalization [7.253255826783766]
We propose a masking strategy, which determines a continuous weight based on the agreement of gradients that flow in each edge of network.
SAND-mask is validated over the Domainbed benchmark for domain generalization.
arXiv Detail & Related papers (2021-06-04T05:20:54Z) - Robust Domain-Free Domain Generalization with Class-aware Alignment [4.442096198968069]
Domain-Free Domain Generalization (DFDG) is a model-agnostic method to achieve better generalization performance on the unseen test domain.
DFDG uses novel strategies to learn domain-invariant class-discriminative features.
It obtains competitive performance on both time series sensor and image classification public datasets.
arXiv Detail & Related papers (2021-02-17T17:46:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.