論文の概要: OccFusion: Depth Estimation Free Multi-sensor Fusion for 3D Occupancy Prediction
- arxiv url: http://arxiv.org/abs/2403.05329v2
- Date: Wed, 10 Jul 2024 11:08:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-11 21:39:45.830824
- Title: OccFusion: Depth Estimation Free Multi-sensor Fusion for 3D Occupancy Prediction
- Title(参考訳): OccFusion:3次元動作予測のための深さ推定自由マルチセンサフュージョン
- Authors: Ji Zhang, Yiran Ding, Zixin Liu,
- Abstract要約: マルチセンサ融合に基づく自律走行システムの3次元占有予測
従来の核融合による3次元占有予測は2次元画像特徴の深度推定に頼っていた。
深度推定自由マルチモーダル融合フレームワークOccFusionを提案する。
- 参考スコア(独自算出の注目度): 5.285847977231642
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D occupancy prediction based on multi-sensor fusion,crucial for a reliable autonomous driving system, enables fine-grained understanding of 3D scenes. Previous fusion-based 3D occupancy predictions relied on depth estimation for processing 2D image features. However, depth estimation is an ill-posed problem, hindering the accuracy and robustness of these methods. Furthermore, fine-grained occupancy prediction demands extensive computational resources. To address these issues, we propose OccFusion, a depth estimation free multi-modal fusion framework. Additionally, we introduce a generalizable active training method and an active decoder that can be applied to any occupancy prediction model, with the potential to enhance their performance. Experiments conducted on nuScenes-Occupancy and nuScenes-Occ3D demonstrate our framework's superior performance. Detailed ablation studies highlight the effectiveness of each proposed method.
- Abstract(参考訳): マルチセンサフュージョンに基づく3次元占有予測(信頼性の高い自律運転システムのための精査)により、3Dシーンのきめ細かい理解が可能となる。
従来の核融合による3次元占有予測は2次元画像特徴の深度推定に頼っていた。
しかし、深さ推定は不適切な問題であり、これらの手法の精度と堅牢性を妨げている。
さらに、微粒な占有率予測には広範な計算資源が要求される。
これらの問題に対処するため,奥行き推定自由マルチモーダル融合フレームワークOccFusionを提案する。
さらに,任意の占有率予測モデルに適用可能な,一般化可能なアクティブトレーニング手法とアクティブデコーダを導入する。
nuScenes-OccupancyとnuScenes-Occ3Dの実験は、我々のフレームワークの優れた性能を示す。
詳細なアブレーション研究は,提案手法の有効性を浮き彫りにしている。
関連論文リスト
- UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3Dは多視点人間のポーズ推定のための新しいアプローチである。
直接的な3Dアノテーションを必要とせずに、堅牢性と柔軟性を向上させる。
論文 参考訳(メタデータ) (2024-04-23T00:18:00Z) - Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3Dは3Dシーン理解モデルの信頼性をベンチマークし精査する先駆的な試みである。
10種類の3Dデータセットにわたる28の最先端モデルを評価した。
本稿では,3次元モデルのキャリブレーション向上を目的とした,深度対応のスケーリング手法であるDeptSを紹介する。
論文 参考訳(メタデータ) (2024-03-25T17:59:59Z) - OccFusion: Multi-Sensor Fusion Framework for 3D Semantic Occupancy Prediction [11.33083039877258]
本稿では,3次元占有予測のための新しいセンサ融合フレームワークであるOccFusionを紹介する。
ライダーやサラウンドビューレーダなどの付加センサの機能を統合することで、我々のフレームワークは占有率予測の精度と堅牢性を高めることができる。
論文 参考訳(メタデータ) (2024-03-03T23:46:06Z) - Self-Supervised Depth Completion Guided by 3D Perception and Geometry
Consistency [17.68427514090938]
本稿では,3次元の知覚的特徴と多視点幾何整合性を利用して,高精度な自己監督深度補完法を提案する。
NYU-Depthv2 と VOID のベンチマークデータセットを用いた実験により,提案モデルが最先端の深度補完性能を実現することを示す。
論文 参考訳(メタデータ) (2023-12-23T14:19:56Z) - RadOcc: Learning Cross-Modality Occupancy Knowledge through Rendering
Assisted Distillation [50.35403070279804]
マルチビュー画像を用いた3次元シーンの占有状況とセマンティクスを推定することを目的とした,新たな課題である3D占有予測手法を提案する。
本稿では,RandOccを提案する。Rendering Assisted distillation paradigm for 3D Occupancy prediction。
論文 参考訳(メタデータ) (2023-12-19T03:39:56Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
本稿では,OccNeRF法を用いて,3次元監視なしで占有ネットワークを訓練する手法を提案する。
我々は、再構成された占有領域をパラメータ化し、サンプリング戦略を再編成し、カメラの無限知覚範囲に合わせる。
意味的占有予測のために,事前学習した開語彙2Dセグメンテーションモデルの出力をフィルタリングし,プロンプトを洗練するためのいくつかの戦略を設計する。
論文 参考訳(メタデータ) (2023-12-14T18:58:52Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
本稿では,ポイントクラウドに基づく不整合予測を緩和する3次元高調波損失関数を提案する。
提案手法はベンチマークモデルよりも性能が大幅に向上する。
私たちのコードはオープンソースで公開されています。
論文 参考訳(メタデータ) (2022-11-07T10:11:48Z) - Depth Estimation Matters Most: Improving Per-Object Depth Estimation for
Monocular 3D Detection and Tracking [47.59619420444781]
検出・追跡を含む単眼的3D知覚へのアプローチは、LiDARベースの手法と比較して性能が劣ることが多い。
本稿では,オブジェクト(トラックレット)の複数のフレームに異なる表現(RGBと擬似LiDAR)と時間情報を組み合わせた多層融合手法を提案する。
論文 参考訳(メタデータ) (2022-06-08T03:37:59Z) - On Triangulation as a Form of Self-Supervision for 3D Human Pose
Estimation [57.766049538913926]
ラベル付きデータが豊富である場合, 単一画像からの3次元ポーズ推定に対する改良されたアプローチは, 極めて効果的である。
最近の注目の多くは、セミと(あるいは)弱い教師付き学習に移行している。
本稿では,多視点の幾何学的制約を,識別可能な三角測量を用いて課し,ラベルがない場合の自己監督の形式として用いることを提案する。
論文 参考訳(メタデータ) (2022-03-29T19:11:54Z) - Probabilistic and Geometric Depth: Detecting Objects in Perspective [78.00922683083776]
3次元物体検出は、運転支援システムなどの様々な実用用途で必要とされる重要な機能である。
双眼視やLiDARに頼っている従来の設定に比べて、経済的な解決策として単眼3D検出が注目されているが、それでも満足のいく結果が得られていない。
本稿ではまず,この問題に関する系統的研究を行い,現在の単分子3次元検出問題をインスタンス深度推定問題として単純化できることを考察する。
論文 参考訳(メタデータ) (2021-07-29T16:30:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。