論文の概要: Explaining Pre-Trained Language Models with Attribution Scores: An
Analysis in Low-Resource Settings
- arxiv url: http://arxiv.org/abs/2403.05338v1
- Date: Fri, 8 Mar 2024 14:14:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-11 13:25:03.741324
- Title: Explaining Pre-Trained Language Models with Attribution Scores: An
Analysis in Low-Resource Settings
- Title(参考訳): 属性スコアを用いた事前学習言語モデルの説明:低リソース設定の分析
- Authors: Wei Zhou, Heike Adel, Hendrik Schuff, Ngoc Thang Vu
- Abstract要約: 我々は,素早いモデルから抽出した帰属スコアの妥当性と忠実度を分析した。
プロンプトパラダイムを用いることで、低リソース環境下でモデルを微調整するよりも、より妥当な説明が得られます。
- 参考スコア(独自算出の注目度): 32.03184402316848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Attribution scores indicate the importance of different input parts and can,
thus, explain model behaviour. Currently, prompt-based models are gaining
popularity, i.a., due to their easier adaptability in low-resource settings.
However, the quality of attribution scores extracted from prompt-based models
has not been investigated yet. In this work, we address this topic by analyzing
attribution scores extracted from prompt-based models w.r.t. plausibility and
faithfulness and comparing them with attribution scores extracted from
fine-tuned models and large language models. In contrast to previous work, we
introduce training size as another dimension into the analysis. We find that
using the prompting paradigm (with either encoder-based or decoder-based
models) yields more plausible explanations than fine-tuning the models in
low-resource settings and Shapley Value Sampling consistently outperforms
attention and Integrated Gradients in terms of leading to more plausible and
faithful explanations.
- Abstract(参考訳): 属性スコアは、異なる入力部品の重要性を示し、モデル動作を説明することができる。
現在、プロンプトベースのモデルの人気が高まっている。
しかし,プロンプトモデルから抽出した属性スコアの質についてはまだ調査されていない。
本稿では,プロンプトベースモデルから抽出した帰属スコアw.r.t.の帰属可能性と忠実性を分析し,細調整されたモデルと大規模言語モデルから抽出した帰属スコアと比較する。
従来の研究とは対照的に、分析にトレーニングサイズを別の次元として導入する。
我々は、プロンプトパラダイム(エンコーダベースまたはデコーダベースモデルのいずれか)を使用することで、低リソース設定でモデルを微調整するよりも、より妥当な説明が得られることを発見した。
関連論文リスト
- Model-agnostic Body Part Relevance Assessment for Pedestrian Detection [4.405053430046726]
歩行者検出のための身体部分関連性評価によるコンピュータビジョンコンテキストにおけるサンプリングに基づく説明モデルを用いたフレームワークを提案する。
我々は,KernelSHAPに類似した新しいサンプリングベース手法を導入し,サンプリングサイズを小さくするために,より堅牢性を示し,大規模データセットにおける説明可能性解析に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-27T10:10:25Z) - Preserving Knowledge Invariance: Rethinking Robustness Evaluation of
Open Information Extraction [50.62245481416744]
実世界におけるオープン情報抽出モデルの評価をシミュレートする最初のベンチマークを示す。
我々は、それぞれの例が知識不変のcliqueである大規模なテストベッドを設計し、注釈付けする。
さらにロバスト性計量を解明することにより、その性能が全体の傾きに対して一貫して正確であるならば、モデルはロバストであると判断される。
論文 参考訳(メタデータ) (2023-05-23T12:05:09Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
本稿では,最小記述長(MDL)の原理を用いて評価指標を考案する。
我々は、読み出しモデルのためのハイブリッド離散および連続値モデル空間を設計し、それらの予測を組み合わせるために切替戦略を用いる。
提案手法はオンライン手法で効率的に計算でき,様々なアーキテクチャの事前学習された視覚エンコーダに対する結果を示す。
論文 参考訳(メタデータ) (2023-02-19T14:08:01Z) - Investigating Ensemble Methods for Model Robustness Improvement of Text
Classifiers [66.36045164286854]
既存のバイアス機能を分析し、すべてのケースに最適なモデルが存在しないことを実証します。
適切なバイアスモデルを選択することで、より洗練されたモデル設計でベースラインよりもロバスト性が得られる。
論文 参考訳(メタデータ) (2022-10-28T17:52:10Z) - Assessing Out-of-Domain Language Model Performance from Few Examples [38.245449474937914]
ドメイン外性能(OOD)を数ショットで予測するタスクに対処する。
数ショットの例でモデル精度をみると、このタスクのパフォーマンスをベンチマークする。
帰属に基づく要因がOODの相対モデルの性能のランク付けに有効であることを示す。
論文 参考訳(メタデータ) (2022-10-13T04:45:26Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
検索ベースの機械学習手法は、幅広い問題で成功をおさめた。
これらのモデルの約束を示す文献が増えているにもかかわらず、そのようなモデルの理論的基盤はいまだに解明されていない。
本稿では,その一般化能力を特徴付けるために,検索ベースモデルの形式的処理を行う。
論文 参考訳(メタデータ) (2022-10-06T00:33:01Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
解釈可能な機械学習は、ブラックボックスシステムの特定の予測を駆動する要因に関する洞察を提供する。
既存の手法は主に、局所的な加法的あるいはインスタンス的なアプローチに従う説明的入力特徴の選択に重点を置いている。
本研究は,両手法の長所を生かし,複数の対象クラスに対する局所的な説明を同時に学習するためのグローバルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-07T06:50:27Z) - Evaluation of HTR models without Ground Truth Material [2.4792948967354236]
手書き文字認識モデルの開発における評価は容易である。
しかし、開発からアプリケーションに切り替えると、評価プロセスはトリッキーになります。
我々は,レキシコンに基づく評価が,レキシコンに基づく手法と競合することを示す。
論文 参考訳(メタデータ) (2022-01-17T01:26:09Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Layer-wise Analysis of a Self-supervised Speech Representation Model [26.727775920272205]
自己教師付き学習アプローチは、音声表現モデルの事前学習に成功している。
事前訓練された表現そのものに符号化された情報のタイプや範囲についてはあまり研究されていない。
論文 参考訳(メタデータ) (2021-07-10T02:13:25Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。