Exploring Robust Features for Few-Shot Object Detection in Satellite
Imagery
- URL: http://arxiv.org/abs/2403.05381v1
- Date: Fri, 8 Mar 2024 15:20:27 GMT
- Title: Exploring Robust Features for Few-Shot Object Detection in Satellite
Imagery
- Authors: Xavier Bou, Gabriele Facciolo, Rafael Grompone von Gioi, Jean-Michel
Morel, Thibaud Ehret
- Abstract summary: We develop a few-shot object detector based on a traditional two-stage architecture.
A large-scale pre-trained model is used to build class-reference embeddings or prototypes.
We perform evaluations on two remote sensing datasets containing challenging and rare objects.
- Score: 17.156864650143678
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of this paper is to perform object detection in satellite imagery
with only a few examples, thus enabling users to specify any object class with
minimal annotation. To this end, we explore recent methods and ideas from
open-vocabulary detection for the remote sensing domain. We develop a few-shot
object detector based on a traditional two-stage architecture, where the
classification block is replaced by a prototype-based classifier. A large-scale
pre-trained model is used to build class-reference embeddings or prototypes,
which are compared to region proposal contents for label prediction. In
addition, we propose to fine-tune prototypes on available training images to
boost performance and learn differences between similar classes, such as
aircraft types. We perform extensive evaluations on two remote sensing datasets
containing challenging and rare objects. Moreover, we study the performance of
both visual and image-text features, namely DINOv2 and CLIP, including two CLIP
models specifically tailored for remote sensing applications. Results indicate
that visual features are largely superior to vision-language models, as the
latter lack the necessary domain-specific vocabulary. Lastly, the developed
detector outperforms fully supervised and few-shot methods evaluated on the
SIMD and DIOR datasets, despite minimal training parameters.
Related papers
- Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Few-shot Oriented Object Detection with Memorable Contrastive Learning in Remote Sensing Images [11.217630579076237]
Few-shot object detection (FSOD) has garnered significant research attention in the field of remote sensing.
We propose a novel FSOD method for remote sensing images called Few-shot Oriented object detection with Memorable Contrastive learning (FOMC)
Specifically, we employ oriented bounding boxes instead of traditional horizontal bounding boxes to learn a better feature representation for arbitrary-oriented aerial objects.
arXiv Detail & Related papers (2024-03-20T08:15:18Z) - Exploiting Unlabeled Data with Vision and Language Models for Object
Detection [64.94365501586118]
Building robust and generic object detection frameworks requires scaling to larger label spaces and bigger training datasets.
We propose a novel method that leverages the rich semantics available in recent vision and language models to localize and classify objects in unlabeled images.
We demonstrate the value of the generated pseudo labels in two specific tasks, open-vocabulary detection and semi-supervised object detection.
arXiv Detail & Related papers (2022-07-18T21:47:15Z) - Robust Region Feature Synthesizer for Zero-Shot Object Detection [87.79902339984142]
We build a novel zero-shot object detection framework that contains an Intra-class Semantic Diverging component and an Inter-class Structure Preserving component.
It is the first study to carry out zero-shot object detection in remote sensing imagery.
arXiv Detail & Related papers (2022-01-01T03:09:15Z) - Experience feedback using Representation Learning for Few-Shot Object
Detection on Aerial Images [2.8560476609689185]
The performance of our method is assessed on DOTA, a large-scale remote sensing images dataset.
It highlights in particular some intrinsic weaknesses for the few-shot object detection task.
arXiv Detail & Related papers (2021-09-27T13:04:53Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
We propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain.
We use a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them.
arXiv Detail & Related papers (2020-10-19T12:36:11Z) - Few-shot Object Detection with Feature Attention Highlight Module in
Remote Sensing Images [10.92844145381214]
We propose a few-shot object detector which is designed for detecting novel objects based on only a few examples.
Our model is composed of a feature-extractor, a feature attention highlight module as well as a two-stage detection backend.
Experiments demonstrate the effectiveness of the proposed method for few-shot cases.
arXiv Detail & Related papers (2020-09-03T12:38:49Z) - Part-aware Prototype Network for Few-shot Semantic Segmentation [50.581647306020095]
We propose a novel few-shot semantic segmentation framework based on the prototype representation.
Our key idea is to decompose the holistic class representation into a set of part-aware prototypes.
We develop a novel graph neural network model to generate and enhance the proposed part-aware prototypes.
arXiv Detail & Related papers (2020-07-13T11:03:09Z) - Few-shot Object Detection on Remote Sensing Images [11.40135025181393]
We introduce a few-shot learning-based method for object detection on remote sensing images.
We build our few-shot object detection model upon YOLOv3 architecture and develop a multi-scale object detection framework.
arXiv Detail & Related papers (2020-06-14T07:18:10Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.