Algorithmic Identification of Essential Exogenous Nodes for Causal Sufficiency in Brain Networks
- URL: http://arxiv.org/abs/2403.05407v2
- Date: Fri, 15 Mar 2024 14:35:35 GMT
- Title: Algorithmic Identification of Essential Exogenous Nodes for Causal Sufficiency in Brain Networks
- Authors: Abdolmahdi Bagheri, Mahdi Dehshiri, Babak Nadjar Araabi, Alireza Akhondi Asl,
- Abstract summary: In the investigation of any causal mechanisms, such as the brain's causal networks, the assumption of causal sufficiency plays a critical role.
We propose an algorithmic identification approach for determining essential nodes that satisfy the critical need for causal sufficiency to adhere to it in such inquiries.
- Score: 1.9874264019909988
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the investigation of any causal mechanisms, such as the brain's causal networks, the assumption of causal sufficiency plays a critical role. Notably, neglecting this assumption can result in significant errors, a fact that is often disregarded in the causal analysis of brain networks. In this study, we propose an algorithmic identification approach for determining essential exogenous nodes that satisfy the critical need for causal sufficiency to adhere to it in such inquiries. Our approach consists of three main steps: First, by capturing the essence of the Peter-Clark (PC) algorithm, we conduct independence tests for pairs of regions within a network, as well as for the same pairs conditioned on nodes from other networks. Next, we distinguish candidate confounders by analyzing the differences between the conditional and unconditional results, using the Kolmogorov-Smirnov test. Subsequently, we utilize Non-Factorized identifiable Variational Autoencoders (NF-iVAE) along with the Correlation Coefficient index (CCI) metric to identify the confounding variables within these candidate nodes. Applying our method to the Human Connectome Projects (HCP) movie-watching task data, we demonstrate that while interactions exist between dorsal and ventral regions, only dorsal regions serve as confounders for the visual networks, and vice versa. These findings align consistently with those resulting from the neuroscientific perspective. Finally, we show the reliability of our results by testing 30 independent runs for NF-iVAE initialization.
Related papers
- Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
Key question in many network studies is whether the observed correlations between units are primarily due to contagion or latent confounding.
We propose network causal effect estimation strategies that provide unbiased and consistent estimates.
We evaluate the effectiveness of our methods with synthetic data and the validity of our assumptions using real-world networks.
arXiv Detail & Related papers (2024-11-02T22:12:44Z) - Statistical tuning of artificial neural network [0.0]
This study introduces methods to enhance the understanding of neural networks, focusing specifically on models with a single hidden layer.
We propose statistical tests to assess the significance of input neurons and introduce algorithms for dimensionality reduction.
This research advances the field of Explainable Artificial Intelligence by presenting robust statistical frameworks for interpreting neural networks.
arXiv Detail & Related papers (2024-09-24T19:47:03Z) - Cycle Consistency-based Uncertainty Quantification of Neural Networks in
Inverse Imaging Problems [10.992084413881592]
Uncertainty estimation is critical for numerous applications of deep neural networks.
We show an uncertainty quantification approach for deep neural networks used in inverse problems based on cycle consistency.
arXiv Detail & Related papers (2023-05-22T09:23:18Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - On Neural Network Equivalence Checking using SMT Solvers [0.7078672343881655]
Two pretrained neural networks are deemed equivalent if they yield similar outputs for the same inputs.
This work presents a first SMT-based encoding of the equivalence checking problem.
arXiv Detail & Related papers (2022-03-22T11:31:12Z) - Learning to Detect Critical Nodes in Sparse Graphs via Feature Importance Awareness [53.351863569314794]
The critical node problem (CNP) aims to find a set of critical nodes from a network whose deletion maximally degrades the pairwise connectivity of the residual network.
This work proposes a feature importance-aware graph attention network for node representation.
It combines it with dueling double deep Q-network to create an end-to-end algorithm to solve CNP for the first time.
arXiv Detail & Related papers (2021-12-03T14:23:05Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - And/or trade-off in artificial neurons: impact on adversarial robustness [91.3755431537592]
Presence of sufficient number of OR-like neurons in a network can lead to classification brittleness and increased vulnerability to adversarial attacks.
We define AND-like neurons and propose measures to increase their proportion in the network.
Experimental results on the MNIST dataset suggest that our approach holds promise as a direction for further exploration.
arXiv Detail & Related papers (2021-02-15T08:19:05Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z) - Biologically plausible single-layer networks for nonnegative independent
component analysis [21.646490546361935]
We seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm.
For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits.
arXiv Detail & Related papers (2020-10-23T19:31:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.