Attention-guided Feature Distillation for Semantic Segmentation
- URL: http://arxiv.org/abs/2403.05451v2
- Date: Mon, 26 Aug 2024 13:58:16 GMT
- Title: Attention-guided Feature Distillation for Semantic Segmentation
- Authors: Amir M. Mansourian, Arya Jalali, Rozhan Ahmadi, Shohreh Kasaei,
- Abstract summary: This paper showcases the efficacy of a simple yet powerful method for utilizing refined feature maps to transfer attention.
The proposed method has proven to be effective in distilling rich information, outperforming existing methods in semantic segmentation as a dense prediction task.
- Score: 8.344263189293578
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contrast to existing complex methodologies commonly employed for distilling knowledge from a teacher to a student, this paper showcases the efficacy of a simple yet powerful method for utilizing refined feature maps to transfer attention. The proposed method has proven to be effective in distilling rich information, outperforming existing methods in semantic segmentation as a dense prediction task. The proposed Attention-guided Feature Distillation (AttnFD) method, employs the Convolutional Block Attention Module (CBAM), which refines feature maps by taking into account both channel-specific and spatial information content. Simply using the Mean Squared Error (MSE) loss function between the refined feature maps of the teacher and the student, AttnFD demonstrates outstanding performance in semantic segmentation, achieving state-of-the-art results in terms of improving the mean Intersection over Union (mIoU) of the student network on the PascalVoc 2012, Cityscapes, COCO, and CamVid datasets.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.
Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.
We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - iSeg: An Iterative Refinement-based Framework for Training-free Segmentation [85.58324416386375]
We present a deep experimental analysis on iteratively refining cross-attention map with self-attention map.
We propose an effective iterative refinement framework for training-free segmentation, named iSeg.
Our proposed iSeg achieves an absolute gain of 3.8% in terms of mIoU compared to the best existing training-free approach in literature.
arXiv Detail & Related papers (2024-09-05T03:07:26Z) - I2CKD : Intra- and Inter-Class Knowledge Distillation for Semantic Segmentation [1.433758865948252]
This paper proposes a new knowledge distillation method tailored for image semantic segmentation, termed Intra- and Inter-Class Knowledge Distillation (I2CKD)
The focus of this method is on capturing and transferring knowledge between the intermediate layers of teacher (cumbersome model) and student (compact model)
arXiv Detail & Related papers (2024-03-27T12:05:22Z) - Auxiliary Tasks Enhanced Dual-affinity Learning for Weakly Supervised
Semantic Segmentation [79.05949524349005]
We propose AuxSegNet+, a weakly supervised auxiliary learning framework to explore the rich information from saliency maps.
We also propose a cross-task affinity learning mechanism to learn pixel-level affinities from the saliency and segmentation feature maps.
arXiv Detail & Related papers (2024-03-02T10:03:21Z) - AICSD: Adaptive Inter-Class Similarity Distillation for Semantic
Segmentation [12.92102548320001]
This paper proposes a novel method called Inter-Class Similarity Distillation (ICSD) for the purpose of knowledge distillation.
The proposed method transfers high-order relations from the teacher network to the student network by independently computing intra-class distributions for each class from network outputs.
Experiments conducted on two well-known datasets for semantic segmentation, Cityscapes and Pascal VOC 2012, validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-08-08T13:17:20Z) - Knowledge Diffusion for Distillation [53.908314960324915]
The representation gap between teacher and student is an emerging topic in knowledge distillation (KD)
We state that the essence of these methods is to discard the noisy information and distill the valuable information in the feature.
We propose a novel KD method dubbed DiffKD, to explicitly denoise and match features using diffusion models.
arXiv Detail & Related papers (2023-05-25T04:49:34Z) - Distilling Inter-Class Distance for Semantic Segmentation [17.76592932725305]
We propose an Inter-class Distance Distillation (IDD) method to transfer the inter-class distance in the feature space from the teacher network to the student network.
Our method is helpful to improve the accuracy of semantic segmentation models and achieves the state-of-the-art performance.
arXiv Detail & Related papers (2022-05-07T13:13:55Z) - Leveraging Auxiliary Tasks with Affinity Learning for Weakly Supervised
Semantic Segmentation [88.49669148290306]
We propose a novel weakly supervised multi-task framework called AuxSegNet to leverage saliency detection and multi-label image classification as auxiliary tasks.
Inspired by their similar structured semantics, we also propose to learn a cross-task global pixel-level affinity map from the saliency and segmentation representations.
The learned cross-task affinity can be used to refine saliency predictions and propagate CAM maps to provide improved pseudo labels for both tasks.
arXiv Detail & Related papers (2021-07-25T11:39:58Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.