Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation
- URL: http://arxiv.org/abs/2007.10787v1
- Date: Tue, 21 Jul 2020 13:27:09 GMT
- Title: Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation
- Authors: Yanning Zhou, Hao Chen, Huangjing Lin, Pheng-Ann Heng
- Abstract summary: We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
- Score: 54.49894381464853
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning methods show promising results for overlapping cervical cell
instance segmentation. However, in order to train a model with good
generalization ability, voluminous pixel-level annotations are demanded which
is quite expensive and time-consuming for acquisition. In this paper, we
propose to leverage both labeled and unlabeled data for instance segmentation
with improved accuracy by knowledge distillation. We propose a novel
Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining
(MMT-PSM), which consists of a teacher and a student network during training.
Two networks are encouraged to be consistent both in feature and semantic level
under small perturbations. The teacher's self-ensemble predictions from
$K$-time augmented samples are used to construct the reliable pseudo-labels for
optimizing the student. We design a novel strategy to estimate the sensitivity
to perturbations for each proposal and select informative samples from massive
cases to facilitate fast and effective semantic distillation. In addition, to
eliminate the unavoidable noise from the background region, we propose to use
the predicted segmentation mask as guidance to enforce the feature distillation
in the foreground region. Experiments show that the proposed method improves
the performance significantly compared with the supervised method learned from
labeled data only, and outperforms state-of-the-art semi-supervised methods.
Related papers
- Annotation-Efficient Polyp Segmentation via Active Learning [45.59503015577479]
We propose a deep active learning framework for annotation-efficient polyp segmentation.
In practice, we measure the uncertainty of each sample by examining the similarity between features masked by the prediction map of the polyp and the background area.
We show that our proposed method achieved state-of-the-art performance compared to other competitors on both a public dataset and a large-scale in-house dataset.
arXiv Detail & Related papers (2024-03-21T12:25:17Z) - Noisy Correspondence Learning with Self-Reinforcing Errors Mitigation [63.180725016463974]
Cross-modal retrieval relies on well-matched large-scale datasets that are laborious in practice.
We introduce a novel noisy correspondence learning framework, namely textbfSelf-textbfReinforcing textbfErrors textbfMitigation (SREM)
arXiv Detail & Related papers (2023-12-27T09:03:43Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Scribble-supervised Cell Segmentation Using Multiscale Contrastive
Regularization [9.849498498869258]
Scribble2Label (S2L) demonstrated that using only a handful of scribbles with self-supervised learning can generate accurate segmentation results without full annotation.
In this work, we employ a novel multiscale contrastive regularization term for S2L.
The main idea is to extract features from intermediate layers of the neural network for contrastive loss so that structures at various scales can be effectively separated.
arXiv Detail & Related papers (2023-06-25T06:00:33Z) - Paced-Curriculum Distillation with Prediction and Label Uncertainty for
Image Segmentation [25.20877071896899]
In curriculum learning, the idea is to train on easier samples first and gradually increase the difficulty.
In self-paced learning, a pacing function defines the speed to adapt the training progress.
We develop a novel paced-curriculum distillation (PCD) for medical image segmentation.
arXiv Detail & Related papers (2023-02-02T12:24:14Z) - Semi-Supervised Semantic Segmentation via Gentle Teaching Assistant [72.4512562104361]
We argue that the unlabeled data with pseudo labels can facilitate the learning of representative features in the feature extractor.
Motivated by this consideration, we propose a novel framework, Gentle Teaching Assistant (GTA-Seg) to disentangle the effects of pseudo labels on feature extractor and mask predictor.
arXiv Detail & Related papers (2023-01-18T07:11:24Z) - A Simple Baseline for Semi-supervised Semantic Segmentation with Strong
Data Augmentation [74.8791451327354]
We propose a simple yet effective semi-supervised learning framework for semantic segmentation.
A set of simple design and training techniques can collectively improve the performance of semi-supervised semantic segmentation significantly.
Our method achieves state-of-the-art results in the semi-supervised settings on the Cityscapes and Pascal VOC datasets.
arXiv Detail & Related papers (2021-04-15T06:01:39Z) - Uncertainty guided semi-supervised segmentation of retinal layers in OCT
images [4.046207281399144]
We propose a novel uncertainty-guided semi-supervised learning based on a student-teacher approach for training the segmentation network.
The proposed framework is a key contribution and applicable for biomedical image segmentation across various imaging modalities.
arXiv Detail & Related papers (2021-03-02T23:14:25Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.