Probabilistic Image-Driven Traffic Modeling via Remote Sensing
- URL: http://arxiv.org/abs/2403.05521v2
- Date: Thu, 18 Jul 2024 16:35:23 GMT
- Title: Probabilistic Image-Driven Traffic Modeling via Remote Sensing
- Authors: Scott Workman, Armin Hadzic,
- Abstract summary: We introduce a multi-modal, multi-task transformer-based segmentation architecture that can be used to create dense city-scale traffic models.
We evaluate our method extensively using the Dynamic Traffic Speeds benchmark dataset and significantly improve the state-of-the-art.
- Score: 8.234589405189187
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work addresses the task of modeling spatiotemporal traffic patterns directly from overhead imagery, which we refer to as image-driven traffic modeling. We extend this line of work and introduce a multi-modal, multi-task transformer-based segmentation architecture that can be used to create dense city-scale traffic models. Our approach includes a geo-temporal positional encoding module for integrating geo-temporal context and a probabilistic objective function for estimating traffic speeds that naturally models temporal variations. We evaluate our method extensively using the Dynamic Traffic Speeds (DTS) benchmark dataset and significantly improve the state-of-the-art. Finally, we introduce the DTS++ dataset to support mobility-related location adaptation experiments.
Related papers
- Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework [2.9490249935740573]
We propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF)
FMPESTF is composed of spatial and temporal modules for down-sampling traffic data.
We introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios.
arXiv Detail & Related papers (2024-10-12T03:47:27Z) - Trajeglish: Traffic Modeling as Next-Token Prediction [67.28197954427638]
A longstanding challenge for self-driving development is simulating dynamic driving scenarios seeded from recorded driving logs.
We apply tools from discrete sequence modeling to model how vehicles, pedestrians and cyclists interact in driving scenarios.
Our model tops the Sim Agents Benchmark, surpassing prior work along the realism meta metric by 3.3% and along the interaction metric by 9.9%.
arXiv Detail & Related papers (2023-12-07T18:53:27Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
We propose an Adaptive Hierarchical SpatioTemporal Network (AHSTN) to promote traffic forecasting.
AHSTN exploits the spatial hierarchy and modeling multi-scale spatial correlations.
Experiments on two real-world datasets show that AHSTN achieves better performance over several strong baselines.
arXiv Detail & Related papers (2023-06-15T14:50:27Z) - TrafficBots: Towards World Models for Autonomous Driving Simulation and
Motion Prediction [149.5716746789134]
We show data-driven traffic simulation can be formulated as a world model.
We present TrafficBots, a multi-agent policy built upon motion prediction and end-to-end driving.
Experiments on the open motion dataset show TrafficBots can simulate realistic multi-agent behaviors.
arXiv Detail & Related papers (2023-03-07T18:28:41Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Multi View Spatial-Temporal Model for Travel Time Estimation [14.591364075326984]
We propose a Multi-View Spatial-Temporal Model (MVSTM) to capture the dependence of spatial-temporal and trajectory.
Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model the traffic semantics.
Experiments on large-scale taxi trajectory data show that our approach is more effective than the novel method.
arXiv Detail & Related papers (2021-09-15T16:11:18Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Dynamic Traffic Modeling From Overhead Imagery [35.5820716257079]
We propose an automatic approach for generating dynamic maps of traffic speeds using convolutional neural networks.
To train our model, we take advantage of historical traffic data collected from New York City.
arXiv Detail & Related papers (2020-12-18T21:48:03Z) - TAM: Temporal Adaptive Module for Video Recognition [60.83208364110288]
temporal adaptive module (bf TAM) generates video-specific temporal kernels based on its own feature map.
Experiments on Kinetics-400 and Something-Something datasets demonstrate that our TAM outperforms other temporal modeling methods consistently.
arXiv Detail & Related papers (2020-05-14T08:22:45Z) - Traffic Data Imputation using Deep Convolutional Neural Networks [2.7647400328727256]
We show that a well trained neural network can learn traffic speed dynamics from time-space diagrams.
Our results show that with vehicle penetration probe levels as low as 5%, the proposed estimation method can provide a sound reconstruction of macroscopic traffic speeds.
arXiv Detail & Related papers (2020-01-21T12:52:58Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.