Multi View Spatial-Temporal Model for Travel Time Estimation
- URL: http://arxiv.org/abs/2109.07402v1
- Date: Wed, 15 Sep 2021 16:11:18 GMT
- Title: Multi View Spatial-Temporal Model for Travel Time Estimation
- Authors: ZiChuan Liu, Zhaoyang Wu, Meng Wang
- Abstract summary: We propose a Multi-View Spatial-Temporal Model (MVSTM) to capture the dependence of spatial-temporal and trajectory.
Specifically, we use graph2vec to model the spatial view, dual-channel temporal module to model the trajectory view, and structural embedding to model the traffic semantics.
Experiments on large-scale taxi trajectory data show that our approach is more effective than the novel method.
- Score: 14.591364075326984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Taxi arrival time prediction is an essential part of building intelligent
transportation systems. Traditional arrival time estimation methods mainly rely
on traffic map feature extraction, which can not model complex situations and
nonlinear spatial and temporal relationships. Therefore, we propose a
Multi-View Spatial-Temporal Model (MVSTM) to capture the dependence of
spatial-temporal and trajectory. Specifically, we use graph2vec to model the
spatial view, dual-channel temporal module to model the trajectory view, and
structural embedding to model the traffic semantics. Experiments on large-scale
taxi trajectory data show that our approach is more effective than the novel
method. The source code can be obtained from
https://github.com/775269512/SIGSPATIAL-2021-GISCUP-4th-Solution.
Related papers
- A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - Probabilistic Image-Driven Traffic Modeling via Remote Sensing [8.234589405189187]
We introduce a multi-modal, multi-task transformer-based segmentation architecture that can be used to create dense city-scale traffic models.
We evaluate our method extensively using the Dynamic Traffic Speeds benchmark dataset and significantly improve the state-of-the-art.
arXiv Detail & Related papers (2024-03-08T18:43:28Z) - A Fast and Map-Free Model for Trajectory Prediction in Traffics [2.435517936694533]
This paper proposes an efficient trajectory prediction model that is not dependent on traffic maps.
By comprehensively utilizing attention mechanism, LSTM, graph convolution network and temporal transformer, our model is able to learn rich dynamic and interaction information of all agents.
Our model achieves the highest performance when comparing with existing map-free methods and also exceeds most map-based state-of-the-art methods on the Argoverse dataset.
arXiv Detail & Related papers (2023-07-19T08:36:31Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Spatial-temporal traffic modeling with a fusion graph reconstructed by
tensor decomposition [10.104097475236014]
Graph convolutional networks (GCNs) have been widely used in traffic flow prediction.
The design of the spatial-temporal graph adjacency matrix is a key to the success of GCNs.
This paper proposes reconstructing the binary adjacency matrix via tensor decomposition.
arXiv Detail & Related papers (2022-12-12T01:44:52Z) - D2-TPred: Discontinuous Dependency for Trajectory Prediction under
Traffic Lights [68.76631399516823]
We present a trajectory prediction approach with respect to traffic lights, D2-TPred, using a spatial dynamic interaction graph (SDG) and a behavior dependency graph (BDG)
Our experimental results show that our model achieves more than 20.45% and 20.78% in terms of ADE and FDE, respectively, on VTP-TL.
arXiv Detail & Related papers (2022-07-21T10:19:07Z) - Understanding Dynamic Spatio-Temporal Contexts in Long Short-Term Memory
for Road Traffic Speed Prediction [11.92436948211501]
We propose a dynamically localised long short-term memory (LSTM) model that involves both spatial and temporal dependence between roads.
The LSTM model can deal with sequential data with long dependency as well as complex non-linear features.
Empirical results indicated superior prediction performances of the proposed model compared to two different baseline methods.
arXiv Detail & Related papers (2021-12-04T19:33:05Z) - Disentangling and Unifying Graph Convolutions for Skeleton-Based Action
Recognition [79.33539539956186]
We propose a simple method to disentangle multi-scale graph convolutions and a unified spatial-temporal graph convolutional operator named G3D.
By coupling these proposals, we develop a powerful feature extractor named MS-G3D based on which our model outperforms previous state-of-the-art methods on three large-scale datasets.
arXiv Detail & Related papers (2020-03-31T11:28:25Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.