Re-thinking Human Activity Recognition with Hierarchy-aware Label Relationship Modeling
- URL: http://arxiv.org/abs/2403.05557v1
- Date: Sun, 11 Feb 2024 12:23:21 GMT
- Title: Re-thinking Human Activity Recognition with Hierarchy-aware Label Relationship Modeling
- Authors: Jingwei Zuo, Hakim Hacid,
- Abstract summary: Human Activity Recognition (HAR) has been studied for decades, from data collection, learning models, to post-processing and result interpretations.
In this paper, we propose H-HAR, by rethinking the HAR tasks from a fresh perspective by delving into their intricate global label relationships.
Being hierarchy-aware, the graph-based label modeling enhances the fundamental HAR model, by incorporating intricate label relationships into the model.
- Score: 1.2277343096128712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human Activity Recognition (HAR) has been studied for decades, from data collection, learning models, to post-processing and result interpretations. However, the inherent hierarchy in the activities remains relatively under-explored, despite its significant impact on model performance and interpretation. In this paper, we propose H-HAR, by rethinking the HAR tasks from a fresh perspective by delving into their intricate global label relationships. Rather than building multiple classifiers separately for multi-layered activities, we explore the efficacy of a flat model enhanced with graph-based label relationship modeling. Being hierarchy-aware, the graph-based label modeling enhances the fundamental HAR model, by incorporating intricate label relationships into the model. We validate the proposal with a multi-label classifier on complex human activity data. The results highlight the advantages of the proposal, which can be vertically integrated into advanced HAR models to further enhance their performances.
Related papers
- Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - StableLLaVA: Enhanced Visual Instruction Tuning with Synthesized
Image-Dialogue Data [129.92449761766025]
We propose a novel data collection methodology that synchronously synthesizes images and dialogues for visual instruction tuning.
This approach harnesses the power of generative models, marrying the abilities of ChatGPT and text-to-image generative models.
Our research includes comprehensive experiments conducted on various datasets.
arXiv Detail & Related papers (2023-08-20T12:43:52Z) - Knowledge Graph Completion Models are Few-shot Learners: An Empirical
Study of Relation Labeling in E-commerce with LLMs [16.700089674927348]
Large Language Models (LLMs) have shown surprising results in numerous natural language processing tasks.
This paper investigates their powerful learning capabilities in natural language and effectiveness in predicting relations between product types with limited labeled data.
Our results show that LLMs significantly outperform existing KG completion models in relation labeling for e-commerce KGs and exhibit performance strong enough to replace human labeling.
arXiv Detail & Related papers (2023-05-17T00:08:36Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
This work focuses on training a single visual relationship detector predicting over the union of label spaces from multiple datasets.
We propose UniVRD, a novel bottom-up method for Unified Visual Relationship Detection by leveraging vision and language models.
Empirical results on both human-object interaction detection and scene-graph generation demonstrate the competitive performance of our model.
arXiv Detail & Related papers (2023-03-16T00:06:28Z) - Sub-Graph Learning for Spatiotemporal Forecasting via Knowledge
Distillation [22.434970343698676]
We present a new framework called KD-SGL to effectively learn the sub-graphs.
We define one global model to learn the overall structure of the graph and multiple local models for each sub-graph.
arXiv Detail & Related papers (2022-11-17T18:02:55Z) - ACTIVE:Augmentation-Free Graph Contrastive Learning for Partial
Multi-View Clustering [52.491074276133325]
We propose an augmentation-free graph contrastive learning framework to solve the problem of partial multi-view clustering.
The proposed approach elevates instance-level contrastive learning and missing data inference to the cluster-level, effectively mitigating the impact of individual missing data on clustering.
arXiv Detail & Related papers (2022-03-01T02:32:25Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
We consider the problem of Human-Object Interaction (HOI) Detection, which aims to locate and recognize HOI instances in the form of human, action, object> in images.
We argue that multi-level consistencies among objects, actions and interactions are strong cues for generating semantic representations of rare or previously unseen HOIs.
Our model takes visual features of candidate human-object pairs and word embeddings of HOI labels as inputs, maps them into visual-semantic joint embedding space and obtains detection results by measuring their similarities.
arXiv Detail & Related papers (2020-08-14T09:11:18Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.