MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process
- URL: http://arxiv.org/abs/2403.05751v2
- Date: Sat, 16 Mar 2024 01:16:19 GMT
- Title: MG-TSD: Multi-Granularity Time Series Diffusion Models with Guided Learning Process
- Authors: Xinyao Fan, Yueying Wu, Chang Xu, Yuhao Huang, Weiqing Liu, Jiang Bian,
- Abstract summary: We introduce a novel Multi-Granularity Time Series (MG-TSD) model, which achieves state-of-the-art predictive performance.
Our approach does not rely on additional external data, making it versatile and applicable across various domains.
- Score: 26.661721555671626
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, diffusion probabilistic models have attracted attention in generative time series forecasting due to their remarkable capacity to generate high-fidelity samples. However, the effective utilization of their strong modeling ability in the probabilistic time series forecasting task remains an open question, partially due to the challenge of instability arising from their stochastic nature. To address this challenge, we introduce a novel Multi-Granularity Time Series Diffusion (MG-TSD) model, which achieves state-of-the-art predictive performance by leveraging the inherent granularity levels within the data as given targets at intermediate diffusion steps to guide the learning process of diffusion models. The way to construct the targets is motivated by the observation that the forward process of the diffusion model, which sequentially corrupts the data distribution to a standard normal distribution, intuitively aligns with the process of smoothing fine-grained data into a coarse-grained representation, both of which result in a gradual loss of fine distribution features. In the study, we derive a novel multi-granularity guidance diffusion loss function and propose a concise implementation method to effectively utilize coarse-grained data across various granularity levels. More importantly, our approach does not rely on additional external data, making it versatile and applicable across various domains. Extensive experiments conducted on real-world datasets demonstrate that our MG-TSD model outperforms existing time series prediction methods.
Related papers
- Constrained Diffusion Models via Dual Training [80.03953599062365]
Diffusion processes are prone to generating samples that reflect biases in a training dataset.
We develop constrained diffusion models by imposing diffusion constraints based on desired distributions.
We show that our constrained diffusion models generate new data from a mixture data distribution that achieves the optimal trade-off among objective and constraints.
arXiv Detail & Related papers (2024-08-27T14:25:42Z) - Model-Based Diffusion for Trajectory Optimization [8.943418808959494]
We introduce Model-Based Diffusion (MBD), an optimization approach using the diffusion process to solve trajectory optimization (TO) problems without data.
Although MBD does not require external data, it can be naturally integrated with data of diverse qualities to steer the diffusion process.
MBD outperforms state-of-the-art reinforcement learning and sampling-based TO methods in challenging contact-rich tasks.
arXiv Detail & Related papers (2024-05-28T22:14:25Z) - Neural Flow Diffusion Models: Learnable Forward Process for Improved Diffusion Modelling [2.1779479916071067]
We introduce a novel framework that enhances diffusion models by supporting a broader range of forward processes.
We also propose a novel parameterization technique for learning the forward process.
Results underscore NFDM's versatility and its potential for a wide range of applications.
arXiv Detail & Related papers (2024-04-19T15:10:54Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Fast Sampling via Discrete Non-Markov Diffusion Models [49.598085130313514]
We propose a discrete non-Markov diffusion model, which admits an accelerated reverse sampling for discrete data generation.
Our method significantly reduces the number of function evaluations (i.e., calls to the neural network), making the sampling process much faster.
arXiv Detail & Related papers (2023-12-14T18:14:11Z) - Expanding Expressiveness of Diffusion Models with Limited Data via
Self-Distillation based Fine-Tuning [24.791783885165923]
Training diffusion models on limited datasets poses challenges in terms of limited generation capacity and expressiveness.
We propose Self-Distillation for Fine-Tuning diffusion models (SDFT) to address these challenges.
arXiv Detail & Related papers (2023-11-02T06:24:06Z) - Predict, Refine, Synthesize: Self-Guiding Diffusion Models for
Probabilistic Time Series Forecasting [10.491628898499684]
We propose TSDiff, an unconditionally-trained diffusion model for time series.
Our proposed self-guidance mechanism enables conditioning TSDiff for downstream tasks during inference, without requiring auxiliary networks or altering the training procedure.
We demonstrate the effectiveness of our method on three different time series tasks: forecasting, refinement, and synthetic data generation.
arXiv Detail & Related papers (2023-07-21T10:56:36Z) - Semi-Implicit Denoising Diffusion Models (SIDDMs) [50.30163684539586]
Existing models such as Denoising Diffusion Probabilistic Models (DDPM) deliver high-quality, diverse samples but are slowed by an inherently high number of iterative steps.
We introduce a novel approach that tackles the problem by matching implicit and explicit factors.
We demonstrate that our proposed method obtains comparable generative performance to diffusion-based models and vastly superior results to models with a small number of sampling steps.
arXiv Detail & Related papers (2023-06-21T18:49:22Z) - Diff-Instruct: A Universal Approach for Transferring Knowledge From
Pre-trained Diffusion Models [77.83923746319498]
We propose a framework called Diff-Instruct to instruct the training of arbitrary generative models.
We show that Diff-Instruct results in state-of-the-art single-step diffusion-based models.
Experiments on refining GAN models show that the Diff-Instruct can consistently improve the pre-trained generators of GAN models.
arXiv Detail & Related papers (2023-05-29T04:22:57Z) - Fast Inference in Denoising Diffusion Models via MMD Finetuning [23.779985842891705]
We present MMD-DDM, a novel method for fast sampling of diffusion models.
Our approach is based on the idea of using the Maximum Mean Discrepancy (MMD) to finetune the learned distribution with a given budget of timesteps.
Our findings show that the proposed method is able to produce high-quality samples in a fraction of the time required by widely-used diffusion models.
arXiv Detail & Related papers (2023-01-19T09:48:07Z) - A Survey on Generative Diffusion Model [75.93774014861978]
Diffusion models are an emerging class of deep generative models.
They have certain limitations, including a time-consuming iterative generation process and confinement to high-dimensional Euclidean space.
This survey presents a plethora of advanced techniques aimed at enhancing diffusion models.
arXiv Detail & Related papers (2022-09-06T16:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.