論文の概要: SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection
- arxiv url: http://arxiv.org/abs/2403.05817v2
- Date: Mon, 22 Apr 2024 07:43:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-23 23:14:33.891349
- Title: SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection
- Title(参考訳): SAFDNet: 完全スパース3Dオブジェクト検出のためのシンプルで効果的なネットワーク
- Authors: Gang Zhang, Junnan Chen, Guohuan Gao, Jianmin Li, Si Liu, Xiaolin Hu,
- Abstract要約: SAFDNetは、完全にスパースな3Dオブジェクト検出のための単純かつ高効率なアーキテクチャである。
オープン、nuScenes、Argoverse2データセットについて広範な実験を行った。
SAFDNetは以前の最高のハイブリッド検出器HEDNetを2.1倍高速で2.6%のmAPで上回った。
- 参考スコア(独自算出の注目度): 22.120656021516695
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LiDAR-based 3D object detection plays an essential role in autonomous driving. Existing high-performing 3D object detectors usually build dense feature maps in the backbone network and prediction head. However, the computational costs introduced by the dense feature maps grow quadratically as the perception range increases, making these models hard to scale up to long-range detection. Some recent works have attempted to construct fully sparse detectors to solve this issue; nevertheless, the resulting models either rely on a complex multi-stage pipeline or exhibit inferior performance. In this work, we propose SAFDNet, a straightforward yet highly effective architecture, tailored for fully sparse 3D object detection. In SAFDNet, an adaptive feature diffusion strategy is designed to address the center feature missing problem. We conducted extensive experiments on Waymo Open, nuScenes, and Argoverse2 datasets. SAFDNet performed slightly better than the previous SOTA on the first two datasets but much better on the last dataset, which features long-range detection, verifying the efficacy of SAFDNet in scenarios where long-range detection is required. Notably, on Argoverse2, SAFDNet surpassed the previous best hybrid detector HEDNet by 2.6% mAP while being 2.1x faster, and yielded 2.1% mAP gains over the previous best sparse detector FSDv2 while being 1.3x faster. The code will be available at https://github.com/zhanggang001/HEDNet.
- Abstract(参考訳): LiDARベースの3Dオブジェクト検出は、自動運転において重要な役割を果たす。
既存の高性能な3Dオブジェクト検出器は通常、バックボーンネットワークと予測ヘッドに密度の高い特徴マップを構築する。
しかし、高密度特徴写像によって引き起こされる計算コストは、知覚範囲が大きくなるにつれて2次的に増大し、これらのモデルが長距離検出にスケールアップすることが困難になる。
いくつかの最近の研究は、この問題を解決するために完全なスパース検出器を構築しようとしたが、結果として得られたモデルは複雑な多段パイプラインに依存するか、劣った性能を示すかのいずれかであった。
本研究では,SAFDNetを提案する。SAFDNetは,完全スパースな3Dオブジェクト検出に適した,単純かつ高効率なアーキテクチャである。
SAFDNetでは、中心的特徴不足問題に対処するために適応的特徴拡散戦略が設計されている。
Waymo Open、nuScenes、Argoverse2データセットについて広範な実験を行った。
SAFDNetは、最初の2つのデータセットでは以前のSOTAよりもわずかに優れていたが、最後のデータセットでは、長距離検出を必要とするシナリオにおいて、SAFDNetの有効性を検証した。
特にArgoverse2では、SAFDNetは以前の最高のハイブリッド検出器であるHEDNetを2.1倍高速で2.6%上回り、以前の最高のスパース検出器であるFSDv2よりも2.1%上回った。
コードはhttps://github.com/zhanggang001/HEDNetで入手できる。
関連論文リスト
- What Matters in Range View 3D Object Detection [15.147558647138629]
ライダーベースの知覚パイプラインは複雑なシーンを解釈するために3Dオブジェクト検出モデルに依存している。
過去のレンジビュー文献に提案されている複数の手法を使わずに、レンジビュー3次元オブジェクト検出モデル間の最先端を実現する。
論文 参考訳(メタデータ) (2024-07-23T18:42:37Z) - NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Detは、NeRFを用いた屋内マルチビュー3次元検出において、表現学習の強化による優れた性能を実現している。
セマンティックエンハンスメント(セマンティックエンハンスメント)、パースペクティブ・アウェア・サンプリング(パースペクティブ・アウェア・サンプリング)、および順序深度監視を含む3つのソリューションを提案する。
結果として得られたアルゴリズムであるNeRF-Det++は、ScanNetV2とAR KITScenesデータセットで魅力的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-02-22T11:48:06Z) - HEDNet: A Hierarchical Encoder-Decoder Network for 3D Object Detection
in Point Clouds [19.1921315424192]
ポイントクラウドにおける3Dオブジェクト検出は、自律運転システムにとって重要である。
3Dオブジェクト検出における主な課題は、3Dシーン内の点のスパース分布に起因する。
本稿では3次元オブジェクト検出のための階層型エンコーダデコーダネットワークであるHEDNetを提案する。
論文 参考訳(メタデータ) (2023-10-31T07:32:08Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
現在広く使われているマルチモーダル3D検出法は、通常、密度の高いBird-Eye-View特徴マップを使用するLiDARベースの検出器上に構築されている。
完全にスパースなアーキテクチャは、長距離知覚において非常に効率的であるため、注目を集めている。
本稿では,新たに出現するフルスパースアーキテクチャにおいて,画像のモダリティを効果的に活用する方法を検討する。
論文 参考訳(メタデータ) (2023-04-24T17:57:43Z) - VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking [78.25819070166351]
完全スパース3次元物体検出のためのVoxelNextを提案する。
私たちの中核となる洞察は、手作りのプロキシに頼ることなく、スパースボクセル機能に基づいてオブジェクトを直接予測することです。
私たちの強力なスパース畳み込みネットワークVoxelNeXtは、voxelの機能を通して3Dオブジェクトを検出し、追跡します。
論文 参考訳(メタデータ) (2023-03-20T17:40:44Z) - Super Sparse 3D Object Detection [48.684300007948906]
LiDARベースの3Dオブジェクト検出は、自動運転における長距離認識にますます貢献する。
高速な長距離検出を実現するため,まずフルスパース物体検出器FSDを提案する。
FSD++は、連続するフレーム間の点変化を示す残差点を生成する。
論文 参考訳(メタデータ) (2023-01-05T17:03:56Z) - Fully Sparse 3D Object Detection [57.05834683261658]
長距離LiDARオブジェクト検出のためのフルスパース3Dオブジェクト検出器(FSD)を構築した。
FSDは一般的なスパース・ボクセル・エンコーダと新しいスパース・インスタンス認識(SIR)モジュール上に構築されている。
SIRは、ポイントをインスタンスにグループ化することで、以前のポイントベースのメソッドでの待ち行列クエリを避ける。
論文 参考訳(メタデータ) (2022-07-20T17:01:33Z) - Embracing Single Stride 3D Object Detector with Sparse Transformer [63.179720817019096]
自律走行のためのLiDARを用いた3次元物体検出では、物体サイズと入力シーンサイズとの比が2次元検出の場合に比べて有意に小さい。
多くの3D検出器は2D検出器の一般的な慣習に従っており、点雲の定量化後も特徴マップを分解する。
本稿では,SST(Single-stride Sparse Transformer)を提案する。
論文 参考訳(メタデータ) (2021-12-13T02:12:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。