SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection
- URL: http://arxiv.org/abs/2403.05817v3
- Date: Sun, 22 Sep 2024 15:34:34 GMT
- Title: SAFDNet: A Simple and Effective Network for Fully Sparse 3D Object Detection
- Authors: Gang Zhang, Junnan Chen, Guohuan Gao, Jianmin Li, Si Liu, Xiaolin Hu,
- Abstract summary: SAFDNet is a straightforward yet highly effective architecture for fully sparse 3D object detection.
We conducted extensive experiments on Open, nuScenes, and Argoverse2 datasets.
SAFDNet surpassed the previous best hybrid detector HEDNet by 2.6% mAP while being 2.1x faster.
- Score: 22.120656021516695
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: LiDAR-based 3D object detection plays an essential role in autonomous driving. Existing high-performing 3D object detectors usually build dense feature maps in the backbone network and prediction head. However, the computational costs introduced by the dense feature maps grow quadratically as the perception range increases, making these models hard to scale up to long-range detection. Some recent works have attempted to construct fully sparse detectors to solve this issue; nevertheless, the resulting models either rely on a complex multi-stage pipeline or exhibit inferior performance. In this work, we propose SAFDNet, a straightforward yet highly effective architecture, tailored for fully sparse 3D object detection. In SAFDNet, an adaptive feature diffusion strategy is designed to address the center feature missing problem. We conducted extensive experiments on Waymo Open, nuScenes, and Argoverse2 datasets. SAFDNet performed slightly better than the previous SOTA on the first two datasets but much better on the last dataset, which features long-range detection, verifying the efficacy of SAFDNet in scenarios where long-range detection is required. Notably, on Argoverse2, SAFDNet surpassed the previous best hybrid detector HEDNet by 2.6% mAP while being 2.1x faster, and yielded 2.1% mAP gains over the previous best sparse detector FSDv2 while being 1.3x faster. The code will be available at https://github.com/zhanggang001/HEDNet.
Related papers
- What Matters in Range View 3D Object Detection [15.147558647138629]
Lidar-based perception pipelines rely on 3D object detection models to interpret complex scenes.
We achieve state-of-the-art amongst range-view 3D object detection models without using multiple techniques proposed in past range-view literature.
arXiv Detail & Related papers (2024-07-23T18:42:37Z) - NeRF-Det++: Incorporating Semantic Cues and Perspective-aware Depth
Supervision for Indoor Multi-View 3D Detection [72.0098999512727]
NeRF-Det has achieved impressive performance in indoor multi-view 3D detection by utilizing NeRF to enhance representation learning.
We present three corresponding solutions, including semantic enhancement, perspective-aware sampling, and ordinal depth supervision.
The resulting algorithm, NeRF-Det++, has exhibited appealing performance in the ScanNetV2 and AR KITScenes datasets.
arXiv Detail & Related papers (2024-02-22T11:48:06Z) - HEDNet: A Hierarchical Encoder-Decoder Network for 3D Object Detection
in Point Clouds [19.1921315424192]
3D object detection in point clouds is important for autonomous driving systems.
A primary challenge in 3D object detection stems from the sparse distribution of points within the 3D scene.
We propose HEDNet, a hierarchical encoder-decoder network for 3D object detection.
arXiv Detail & Related papers (2023-10-31T07:32:08Z) - Fully Sparse Fusion for 3D Object Detection [69.32694845027927]
Currently prevalent multimodal 3D detection methods are built upon LiDAR-based detectors that usually use dense Bird's-Eye-View feature maps.
Fully sparse architecture is gaining attention as they are highly efficient in long-range perception.
In this paper, we study how to effectively leverage image modality in the emerging fully sparse architecture.
arXiv Detail & Related papers (2023-04-24T17:57:43Z) - VoxelNeXt: Fully Sparse VoxelNet for 3D Object Detection and Tracking [78.25819070166351]
We propose VoxelNext for fully sparse 3D object detection.
Our core insight is to predict objects directly based on sparse voxel features, without relying on hand-crafted proxies.
Our strong sparse convolutional network VoxelNeXt detects and tracks 3D objects through voxel features entirely.
arXiv Detail & Related papers (2023-03-20T17:40:44Z) - Super Sparse 3D Object Detection [48.684300007948906]
LiDAR-based 3D object detection contributes ever-increasingly to the long-range perception in autonomous driving.
To enable efficient long-range detection, we first propose a fully sparse object detector termed FSD.
FSD++ generates residual points, which indicate the point changes between consecutive frames.
arXiv Detail & Related papers (2023-01-05T17:03:56Z) - Fully Sparse 3D Object Detection [57.05834683261658]
We build a fully sparse 3D object detector (FSD) for long-range LiDAR-based object detection.
FSD is built upon the general sparse voxel encoder and a novel sparse instance recognition (SIR) module.
SIR avoids the time-consuming neighbor queries in previous point-based methods by grouping points into instances.
arXiv Detail & Related papers (2022-07-20T17:01:33Z) - Embracing Single Stride 3D Object Detector with Sparse Transformer [63.179720817019096]
In LiDAR-based 3D object detection for autonomous driving, the ratio of the object size to input scene size is significantly smaller compared to 2D detection cases.
Many 3D detectors directly follow the common practice of 2D detectors, which downsample the feature maps even after quantizing the point clouds.
We propose Single-stride Sparse Transformer (SST) to maintain the original resolution from the beginning to the end of the network.
arXiv Detail & Related papers (2021-12-13T02:12:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.