Embracing Single Stride 3D Object Detector with Sparse Transformer
- URL: http://arxiv.org/abs/2112.06375v1
- Date: Mon, 13 Dec 2021 02:12:02 GMT
- Title: Embracing Single Stride 3D Object Detector with Sparse Transformer
- Authors: Lue Fan, Ziqi Pang, Tianyuan Zhang, Yu-Xiong Wang, Hang Zhao, Feng
Wang, Naiyan Wang, Zhaoxiang Zhang
- Abstract summary: In LiDAR-based 3D object detection for autonomous driving, the ratio of the object size to input scene size is significantly smaller compared to 2D detection cases.
Many 3D detectors directly follow the common practice of 2D detectors, which downsample the feature maps even after quantizing the point clouds.
We propose Single-stride Sparse Transformer (SST) to maintain the original resolution from the beginning to the end of the network.
- Score: 63.179720817019096
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In LiDAR-based 3D object detection for autonomous driving, the ratio of the
object size to input scene size is significantly smaller compared to 2D
detection cases. Overlooking this difference, many 3D detectors directly follow
the common practice of 2D detectors, which downsample the feature maps even
after quantizing the point clouds. In this paper, we start by rethinking how
such multi-stride stereotype affects the LiDAR-based 3D object detectors. Our
experiments point out that the downsampling operations bring few advantages,
and lead to inevitable information loss. To remedy this issue, we propose
Single-stride Sparse Transformer (SST) to maintain the original resolution from
the beginning to the end of the network. Armed with transformers, our method
addresses the problem of insufficient receptive field in single-stride
architectures. It also cooperates well with the sparsity of point clouds and
naturally avoids expensive computation. Eventually, our SST achieves
state-of-the-art results on the large scale Waymo Open Dataset. It is worth
mentioning that our method can achieve exciting performance (83.8 LEVEL 1 AP on
validation split) on small object (pedestrian) detection due to the
characteristic of single stride. Codes will be released at
https://github.com/TuSimple/SST
Related papers
- 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - Exploiting More Information in Sparse Point Cloud for 3D Single Object
Tracking [9.693724357115762]
3D single object tracking is a key task in 3D computer vision.
The sparsity of point clouds makes it difficult to compute the similarity and locate the object.
We propose a sparse-to-dense and transformer-based framework for 3D single object tracking.
arXiv Detail & Related papers (2022-10-02T13:38:30Z) - Progressive Coordinate Transforms for Monocular 3D Object Detection [52.00071336733109]
We propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
In this paper, we propose a novel and lightweight approach, dubbed em Progressive Coordinate Transforms (PCT) to facilitate learning coordinate representations.
arXiv Detail & Related papers (2021-08-12T15:22:33Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - Delving into Localization Errors for Monocular 3D Object Detection [85.77319416168362]
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving.
In this work, we quantify the impact introduced by each sub-task and find the localization error' is the vital factor in restricting monocular 3D detection.
arXiv Detail & Related papers (2021-03-30T10:38:01Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
arXiv Detail & Related papers (2020-06-22T15:54:24Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
We propose a universal module that helps 3D detectors focus on the densest region of the point clouds in a boundary-aware manner.
Experiments on KITTI dataset show that DENFI improves the performance of the baseline single-stage detector remarkably.
arXiv Detail & Related papers (2020-04-01T01:21:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.