Towards Optimizing Human-Centric Objectives in AI-Assisted Decision-Making With Offline Reinforcement Learning
- URL: http://arxiv.org/abs/2403.05911v2
- Date: Sun, 14 Apr 2024 21:17:57 GMT
- Title: Towards Optimizing Human-Centric Objectives in AI-Assisted Decision-Making With Offline Reinforcement Learning
- Authors: Zana Buçinca, Siddharth Swaroop, Amanda E. Paluch, Susan A. Murphy, Krzysztof Z. Gajos,
- Abstract summary: offline reinforcement learning (RL) as a general approach for modeling human-AI decision-making.
We show that people interacting with policies optimized for accuracy achieve significantly better accuracy than those interacting with any other type of AI support.
- Score: 10.08973043408929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Imagine if AI decision-support tools not only complemented our ability to make accurate decisions, but also improved our skills, boosted collaboration, and elevated the joy we derive from our tasks. Despite the potential to optimize a broad spectrum of such human-centric objectives, the design of current AI tools remains focused on decision accuracy alone. We propose offline reinforcement learning (RL) as a general approach for modeling human-AI decision-making to optimize human-AI interaction for diverse objectives. RL can optimize such objectives by tailoring decision support, providing the right type of assistance to the right person at the right time. We instantiated our approach with two objectives: human-AI accuracy on the decision-making task and human learning about the task and learned decision support policies from previous human-AI interaction data. We compared the optimized policies against several baselines in AI-assisted decision-making. Across two experiments (N=316 and N=964), our results demonstrated that people interacting with policies optimized for accuracy achieve significantly better accuracy -- and even human-AI complementarity -- compared to those interacting with any other type of AI support. Our results further indicated that human learning was more difficult to optimize than accuracy, with participants who interacted with learning-optimized policies showing significant learning improvement only at times. Our research (1) demonstrates offline RL to be a promising approach to model human-AI decision-making, leading to policies that may optimize human-centric objectives and provide novel insights about the AI-assisted decision-making space, and (2) emphasizes the importance of considering human-centric objectives beyond decision accuracy in AI-assisted decision-making, opening up the novel research challenge of optimizing human-AI interaction for such objectives.
Related papers
- Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
We examine three AI roles: Recommender, Analyzer, and Devil's Advocate.
Our results show each role's distinct strengths and limitations in task performance, reliance appropriateness, and user experience.
These insights offer valuable implications for designing AI assistants with adaptive functional roles according to different situations.
arXiv Detail & Related papers (2024-03-04T07:32:28Z) - Decoding AI's Nudge: A Unified Framework to Predict Human Behavior in
AI-assisted Decision Making [24.258056813524167]
We propose a computational framework that can provide an interpretable characterization of the influence of different forms of AI assistance on decision makers.
By conceptualizing AI assistance as the em nudge'' in human decision making processes, our approach centers around modelling how different forms of AI assistance modify humans' strategy in weighing different information in making their decisions.
arXiv Detail & Related papers (2024-01-11T11:22:36Z) - Towards Effective Human-AI Decision-Making: The Role of Human Learning
in Appropriate Reliance on AI Advice [3.595471754135419]
We show the relationship between learning and appropriate reliance in an experiment with 100 participants.
This work provides fundamental concepts for analyzing reliance and derives implications for the effective design of human-AI decision-making.
arXiv Detail & Related papers (2023-10-03T14:51:53Z) - The Impact of Imperfect XAI on Human-AI Decision-Making [8.305869611846775]
We evaluate how incorrect explanations influence humans' decision-making behavior in a bird species identification task.
Our findings reveal the influence of imperfect XAI and humans' level of expertise on their reliance on AI and human-AI team performance.
arXiv Detail & Related papers (2023-07-25T15:19:36Z) - Learning Complementary Policies for Human-AI Teams [22.13683008398939]
We propose a framework for a novel human-AI collaboration for selecting advantageous course of action.
Our solution aims to exploit the human-AI complementarity to maximize decision rewards.
arXiv Detail & Related papers (2023-02-06T17:22:18Z) - Human-AI Collaboration in Decision-Making: Beyond Learning to Defer [4.874780144224057]
Human-AI collaboration (HAIC) in decision-making aims to create synergistic teaming between humans and AI systems.
Learning to Defer (L2D) has been presented as a promising framework to determine who among humans and AI should take which decisions.
L2D entails several often unfeasible requirements, such as availability of predictions from humans for every instance or ground-truth labels independent from said decision-makers.
arXiv Detail & Related papers (2022-06-27T11:40:55Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.