Can Generative Models Improve Self-Supervised Representation Learning?
- URL: http://arxiv.org/abs/2403.05966v2
- Date: Mon, 27 May 2024 13:49:10 GMT
- Title: Can Generative Models Improve Self-Supervised Representation Learning?
- Authors: Sana Ayromlou, Arash Afkanpour, Vahid Reza Khazaie, Fereshteh Forghani,
- Abstract summary: We introduce a novel framework that enriches the self-supervised learning paradigm by utilizing generative models to produce semantically consistent image augmentations.
Our results show that our framework significantly enhances the quality of learned visual representations by up to 10% Top-1 accuracy in downstream tasks.
- Score: 0.7999703756441756
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement in self-supervised learning (SSL) has highlighted its potential to leverage unlabeled data for learning rich visual representations. However, the existing SSL techniques, particularly those employing different augmentations of the same image, often rely on a limited set of simple transformations that are not representative of real-world data variations. This constrains the diversity and quality of samples, which leads to sub-optimal representations. In this paper, we introduce a novel framework that enriches the SSL paradigm by utilizing generative models to produce semantically consistent image augmentations. By directly conditioning generative models on a source image representation, our method enables the generation of diverse augmentations while maintaining the semantics of the source image, thus offering a richer set of data for self-supervised learning. Our extensive experimental results on various SSL methods demonstrate that our framework significantly enhances the quality of learned visual representations by up to 10\% Top-1 accuracy in downstream tasks. This research demonstrates that incorporating generative models into the SSL workflow opens new avenues for exploring the potential of synthetic data. This development paves the way for more robust and versatile representation learning techniques.
Related papers
- Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Learned representation-guided diffusion models for large-image generation [58.192263311786824]
We introduce a novel approach that trains diffusion models conditioned on embeddings from self-supervised learning (SSL)
Our diffusion models successfully project these features back to high-quality histopathology and remote sensing images.
Augmenting real data by generating variations of real images improves downstream accuracy for patch-level and larger, image-scale classification tasks.
arXiv Detail & Related papers (2023-12-12T14:45:45Z) - Diversify, Don't Fine-Tune: Scaling Up Visual Recognition Training with
Synthetic Images [37.29348016920314]
We present a new framework leveraging off-the-shelf generative models to generate synthetic training images.
We address class name ambiguity, lack of diversity in naive prompts, and domain shifts.
Our framework consistently enhances recognition model performance with more synthetic data.
arXiv Detail & Related papers (2023-12-04T18:35:27Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
This paper presents UniDiff, a unified multi-modal model that integrates image-text contrastive learning (ITC), text-conditioned image synthesis learning (IS), and reciprocal semantic consistency modeling (RSC)
UniDiff demonstrates versatility in both multi-modal understanding and generative tasks.
arXiv Detail & Related papers (2023-06-01T15:39:38Z) - Effective Data Augmentation With Diffusion Models [65.09758931804478]
We address the lack of diversity in data augmentation with image-to-image transformations parameterized by pre-trained text-to-image diffusion models.
Our method edits images to change their semantics using an off-the-shelf diffusion model, and generalizes to novel visual concepts from a few labelled examples.
We evaluate our approach on few-shot image classification tasks, and on a real-world weed recognition task, and observe an improvement in accuracy in tested domains.
arXiv Detail & Related papers (2023-02-07T20:42:28Z) - Style-Hallucinated Dual Consistency Learning: A Unified Framework for
Visual Domain Generalization [113.03189252044773]
We propose a unified framework, Style-HAllucinated Dual consistEncy learning (SHADE), to handle domain shift in various visual tasks.
Our versatile SHADE can significantly enhance the generalization in various visual recognition tasks, including image classification, semantic segmentation and object detection.
arXiv Detail & Related papers (2022-12-18T11:42:51Z) - Virtual embeddings and self-consistency for self-supervised learning [43.086696088061416]
TriMix is a novel concept for self-supervised learning that generates virtual embeddings through linear data.
We validate TriMix on eight benchmark datasets with an improvement of 2.71% and 0.41% better than the second-best models for both data types.
arXiv Detail & Related papers (2022-06-13T10:20:28Z) - High Fidelity Visualization of What Your Self-Supervised Representation
Knows About [22.982471878833362]
In this work, we showcase the use of a conditional diffusion based generative model (RCDM) to visualize representations learned with self-supervised models.
We demonstrate how this model's generation quality is on par with state-of-the-art generative models while being faithful to the representation used as conditioning.
arXiv Detail & Related papers (2021-12-16T19:23:33Z) - High-Fidelity Synthesis with Disentangled Representation [60.19657080953252]
We propose an Information-Distillation Generative Adrial Network (ID-GAN) for disentanglement learning and high-fidelity synthesis.
Our method learns disentangled representation using VAE-based models, and distills the learned representation with an additional nuisance variable to the separate GAN-based generator for high-fidelity synthesis.
Despite the simplicity, we show that the proposed method is highly effective, achieving comparable image generation quality to the state-of-the-art methods using the disentangled representation.
arXiv Detail & Related papers (2020-01-13T14:39:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.