論文の概要: Predicting Depression and Anxiety: A Multi-Layer Perceptron for
Analyzing the Mental Health Impact of COVID-19
- arxiv url: http://arxiv.org/abs/2403.06033v1
- Date: Sat, 9 Mar 2024 22:49:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-13 09:13:32.932302
- Title: Predicting Depression and Anxiety: A Multi-Layer Perceptron for
Analyzing the Mental Health Impact of COVID-19
- Title(参考訳): 抑うつと不安の予測--covid-19の精神健康影響分析のための多層パーセプトロン
- Authors: David Fong and Tianshu Chu and Matthew Heflin and Xiaosi Gu and Oshani
Seneviratne
- Abstract要約: 新型コロナウイルスのパンデミックに伴うメンタルヘルスの傾向を予測するため,多層パーセプトロン(MLP)であるCoDAPを導入した。
本手法は、米国成人の多様なコホートにおいて、最初の新型コロナウイルス波(2020年4月から6月)の間に、週10週間にわたってメンタルヘルスの症状を追跡した包括的データセットを用いている。
このモデルは、パンデミック中の不安や抑うつのパターンを予測するだけでなく、人口統計要因、行動の変化、および精神健康の社会的決定要因の相互作用に関する重要な洞察も明らかにしている。
- 参考スコア(独自算出の注目度): 1.9809980686152868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a multi-layer perceptron (MLP) called the COVID-19 Depression
and Anxiety Predictor (CoDAP) to predict mental health trends, particularly
anxiety and depression, during the COVID-19 pandemic. Our method utilizes a
comprehensive dataset, which tracked mental health symptoms weekly over ten
weeks during the initial COVID-19 wave (April to June 2020) in a diverse cohort
of U.S. adults. This period, characterized by a surge in mental health symptoms
and conditions, offers a critical context for our analysis. Our focus was to
extract and analyze patterns of anxiety and depression through a unique lens of
qualitative individual attributes using CoDAP. This model not only predicts
patterns of anxiety and depression during the pandemic but also unveils key
insights into the interplay of demographic factors, behavioral changes, and
social determinants of mental health. These findings contribute to a more
nuanced understanding of the complexity of mental health issues in times of
global health crises, potentially guiding future early interventions.
- Abstract(参考訳): 新型コロナウイルスのパンデミック(COVID-19 Depression and Anxiety Predictor(CoDAP)と呼ばれる多層パーセプトロン(MLP)を導入し、特に不安やうつ病などのメンタルヘルスの傾向を予測する。
2020年4月から6月まで)最初の新型コロナウイルス(covid-19)の波の間、米国成人の多様なコホートにおいて、毎週10週間にわたってメンタルヘルス症状を追跡する包括的データセットを用いている。
この期間はメンタルヘルスの症状や症状の急増によって特徴づけられ、我々の分析にとって重要な文脈を提供する。
codapを用いた質的個人属性のユニークなレンズを通して不安と抑うつのパターンを抽出・分析することに注力した。
このモデルは、パンデミック中の不安や抑うつのパターンを予測するだけでなく、人口統計要因、行動の変化、および精神健康の社会的決定要因の相互作用に関する重要な洞察も明らかにしている。
これらの発見は、世界的健康危機時のメンタルヘルス問題の複雑さをより微妙な理解に役立ち、将来の早期介入を導く可能性がある。
関連論文リスト
- LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Empowering Psychotherapy with Large Language Models: Cognitive
Distortion Detection through Diagnosis of Thought Prompting [82.64015366154884]
本研究では,認知的歪み検出の課題について検討し,思考の早期発見(DoT)を提案する。
DoTは、事実と思考を分離するための主観的評価、思考と矛盾する推論プロセスを引き出すための対照的な推論、認知スキーマを要約するスキーマ分析という3つの段階を通して、患者のスピーチの診断を行う。
実験により、DoTは認知的歪み検出のためのChatGPTよりも大幅に改善され、一方で人間の専門家が承認した高品質な合理性を生成することが示された。
論文 参考訳(メタデータ) (2023-10-11T02:47:21Z) - Identifying Risk Factors for Post-COVID-19 Mental Health Disorders: A
Machine Learning Perspective [0.0]
我々は、機械学習技術を利用して、COVID-19後のメンタルヘルス障害に関連するリスク要因を特定しました。
年齢、性別、居住地は、精神疾患の発症に影響を及ぼす重要な人口統計要因であった。
新型コロナウイルス感染症の重症度は、重要な臨床予測因子であった。
論文 参考訳(メタデータ) (2023-09-27T22:30:11Z) - Exploring Social Media for Early Detection of Depression in COVID-19
Patients [44.76299288962596]
早期に検出と介入は、新型コロナウイルス患者のうつ病のリスクを減少させる可能性がある。
我々は、感染前後のソーシャルメディア活動に関する情報を含む新型コロナウイルス患者のデータセットを管理した。
うつ病リスクの高いCOVID-19患者の特徴を明らかにするため,本データセットを広範囲に分析した。
論文 参考訳(メタデータ) (2023-02-23T14:13:52Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Capturing social media expressions during the COVID-19 pandemic in
Argentina and forecasting mental health and emotions [0.802904964931021]
アルゼンチンで発生したCOVID-19パンデミックの際の精神状態や感情は、ソーシャルメディアで使われる言語表現に基づいて予測する。
メンタルヘルスの状況と感情は、ソーシャルメディアの内容とレキシコンを結びつけるマーカーを介してキャプチャされる。
論文 参考訳(メタデータ) (2021-01-12T15:15:31Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
不安障害は、子供と成人の両方に影響を及ぼす最も一般的な精神医学的問題である。
スマートフォンから受動的かつ控えめなデータ収集を活用することは、古典的な方法の代替となるかもしれない。
eWellnessは、個人デバイスのセンサとユーザログデータの完全な適合性を、連続的かつ受動的に追跡するために設計された、実験的なモバイルアプリケーションである。
論文 参考訳(メタデータ) (2020-08-09T20:22:52Z) - Detecting Community Depression Dynamics Due to COVID-19 Pandemic in
Australia [17.856486813652932]
本稿では,Twitter上のユーザ生成コンテンツを通じて,COVID-19パンデミックによる地域うつ病の動態を考察する。
オーストラリアのニューサウスウェールズ州から発せられるTwitterユーザーからのツイートを最近削除し、この問題を調査した。
我々の新しい分類モデルは、新型コロナウイルスの影響を受けうるうつ病の極性を抽出することができる。
論文 参考訳(メタデータ) (2020-07-05T12:55:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。