L^2GC:Lorentzian Linear Graph Convolutional Networks for Node Classification
- URL: http://arxiv.org/abs/2403.06064v3
- Date: Fri, 14 Jun 2024 04:15:20 GMT
- Title: L^2GC:Lorentzian Linear Graph Convolutional Networks for Node Classification
- Authors: Qiuyu Liang, Weihua Wang, Feilong Bao, Guanglai Gao,
- Abstract summary: We propose a novel framework for Lorentzian linear GCN.
We map the learned features of graph nodes into hyperbolic space.
We then perform a Lorentzian linear feature transformation to capture the underlying tree-like structure of data.
- Score: 12.69417276887153
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Linear Graph Convolutional Networks (GCNs) are used to classify the node in the graph data. However, we note that most existing linear GCN models perform neural network operations in Euclidean space, which do not explicitly capture the tree-like hierarchical structure exhibited in real-world datasets that modeled as graphs. In this paper, we attempt to introduce hyperbolic space into linear GCN and propose a novel framework for Lorentzian linear GCN. Specifically, we map the learned features of graph nodes into hyperbolic space, and then perform a Lorentzian linear feature transformation to capture the underlying tree-like structure of data. Experimental results on standard citation networks datasets with semi-supervised learning show that our approach yields new state-of-the-art results of accuracy 74.7$\%$ on Citeseer and 81.3$\%$ on PubMed datasets. Furthermore, we observe that our approach can be trained up to two orders of magnitude faster than other nonlinear GCN models on PubMed dataset. Our code is publicly available at https://github.com/llqy123/LLGC-master.
Related papers
- Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - Graph Convolutional Network For Semi-supervised Node Classification With Subgraph Sketching [0.27624021966289597]
We propose the Graph-Learning-Dual Graph Convolutional Neural Network called GLDGCN.
We apply GLDGCN to the semi-supervised node classification task.
Compared with the baseline methods, we achieve higher classification accuracy on three citation networks.
arXiv Detail & Related papers (2024-04-19T09:08:12Z) - You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
We introduce TrainlessGNN, a linear GNN model capitalizing on the observation that text encodings from the same class often cluster together in a linear subspace.
Our experiments reveal that our trainless models can either match or even surpass their conventionally trained counterparts.
arXiv Detail & Related papers (2024-04-17T02:52:11Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Nonlinear State-Space Generalizations of Graph Convolutional Neural
Networks [172.18295279061607]
Graph convolutional neural networks (GCNNs) learn compositional representations from network data by nesting linear graph convolutions into nonlinearities.
In this work, we approach GCNNs from a state-space perspective revealing that the graph convolutional module is a minimalistic linear state-space model.
We show that this state update may be problematic because it is nonparametric, and depending on the graph spectrum it may explode or vanish.
We propose a novel family of nodal aggregation rules that aggregate node features within a layer in a nonlinear state-space parametric fashion allowing for a better trade-off.
arXiv Detail & Related papers (2020-10-27T19:48:56Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
arXiv Detail & Related papers (2020-09-03T13:57:18Z) - Graph Highway Networks [77.38665506495553]
Graph Convolution Networks (GCN) are widely used in learning graph representations due to their effectiveness and efficiency.
They suffer from the notorious over-smoothing problem, in which the learned representations converge to alike vectors when many layers are stacked.
We propose Graph Highway Networks (GHNet) which utilize gating units to balance the trade-off between homogeneity and heterogeneity in the GCN learning process.
arXiv Detail & Related papers (2020-04-09T16:26:43Z) - Infinitely Wide Graph Convolutional Networks: Semi-supervised Learning
via Gaussian Processes [144.6048446370369]
Graph convolutional neural networks(GCNs) have recently demonstrated promising results on graph-based semi-supervised classification.
We propose a GP regression model via GCNs(GPGC) for graph-based semi-supervised learning.
We conduct extensive experiments to evaluate GPGC and demonstrate that it outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2020-02-26T10:02:32Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z) - GraphLIME: Local Interpretable Model Explanations for Graph Neural
Networks [45.824642013383944]
Graph neural networks (GNN) were shown to be successful in effectively representing graph structured data.
We propose GraphLIME, a local interpretable model explanation for graphs using the Hilbert-Schmidt Independence Criterion (HSIC) Lasso.
arXiv Detail & Related papers (2020-01-17T09:50:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.