Low-dose CT Denoising with Language-engaged Dual-space Alignment
- URL: http://arxiv.org/abs/2403.06128v1
- Date: Sun, 10 Mar 2024 08:21:50 GMT
- Title: Low-dose CT Denoising with Language-engaged Dual-space Alignment
- Authors: Zhihao Chen, Tao Chen, Chenhui Wang, Chuang Niu, Ge Wang, Hongming
Shan
- Abstract summary: We propose a plug-and-play Language-Engaged Dual-space Alignment loss (LEDA) to optimize low-dose CT denoising models.
Our idea is to leverage large language models (LLMs) to align denoised CT and normal dose CT images in both the continuous perceptual space and discrete semantic space.
LEDA involves two steps: the first is to pretrain an LLM-guided CT autoencoder, which can encode a CT image into continuous high-level features and quantize them into a token space to produce semantic tokens.
- Score: 21.172319554618497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While various deep learning methods were proposed for low-dose computed
tomography (CT) denoising, they often suffer from over-smoothing, blurring, and
lack of explainability. To alleviate these issues, we propose a plug-and-play
Language-Engaged Dual-space Alignment loss (LEDA) to optimize low-dose CT
denoising models. Our idea is to leverage large language models (LLMs) to align
denoised CT and normal dose CT images in both the continuous perceptual space
and discrete semantic space, which is the first LLM-based scheme for low-dose
CT denoising. LEDA involves two steps: the first is to pretrain an LLM-guided
CT autoencoder, which can encode a CT image into continuous high-level features
and quantize them into a token space to produce semantic tokens derived from
the LLM's vocabulary; and the second is to minimize the discrepancy between the
denoised CT images and normal dose CT in terms of both encoded high-level
features and quantized token embeddings derived by the LLM-guided CT
autoencoder. Extensive experimental results on two public LDCT denoising
datasets demonstrate that our LEDA can enhance existing denoising models in
terms of quantitative metrics and qualitative evaluation, and also provide
explainability through language-level image understanding. Source code is
available at https://github.com/hao1635/LEDA.
Related papers
- DenoMamba: A fused state-space model for low-dose CT denoising [6.468495781611433]
Low-dose computed tomography (LDCT) lower potential risks linked to radiation exposure.
LDCT denoising is based on neural network models that learn data-driven image priors to separate noise evoked by dose reduction from underlying tissue signals.
DenoMamba is a novel denoising method based on state-space modeling (SSM) that efficiently captures short- and long-range context in medical images.
arXiv Detail & Related papers (2024-09-19T21:32:07Z) - WIA-LD2ND: Wavelet-based Image Alignment for Self-supervised Low-Dose CT Denoising [74.14134385961775]
We introduce a novel self-supervised CT image denoising method called WIA-LD2ND, only using NDCT data.
WIA-LD2ND comprises two modules: Wavelet-based Image Alignment (WIA) and Frequency-Aware Multi-scale Loss (FAM)
arXiv Detail & Related papers (2024-03-18T11:20:11Z) - Gadolinium dose reduction for brain MRI using conditional deep learning [66.99830668082234]
Two main challenges for these approaches are the accurate prediction of contrast enhancement and the synthesis of realistic images.
We address both challenges by utilizing the contrast signal encoded in the subtraction images of pre-contrast and post-contrast image pairs.
We demonstrate the effectiveness of our approach on synthetic and real datasets using various scanners, field strengths, and contrast agents.
arXiv Detail & Related papers (2024-03-06T08:35:29Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - Self-supervised Physics-based Denoising for Computed Tomography [2.2758845733923687]
Computed Tomography (CT) imposes risk on the patients due to its inherent X-ray radiation.
Lowering the radiation dose reduces the health risks but leads to noisier measurements, which decreases the tissue contrast and causes artifacts in CT images.
Modern deep learning noise suppression methods alleviate the challenge but require low-noise-high-noise CT image pairs for training.
We introduce a new self-supervised approach for CT denoising Noise2NoiseTD-ANM that can be trained without the high-dose CT projection ground truth images.
arXiv Detail & Related papers (2022-11-01T20:58:50Z) - CTformer: Convolution-free Token2Token Dilated Vision Transformer for
Low-dose CT Denoising [11.67382017798666]
Low-dose computed tomography (LDCT) denoising is an important problem in CT research.
vision transformers have shown superior feature representation ability over convolutional neural networks (CNNs)
We propose a Convolution-free Token2Token Dilated Vision Transformer for low-dose CT denoising.
arXiv Detail & Related papers (2022-02-28T02:58:16Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - TED-net: Convolution-free T2T Vision Transformer-based Encoder-decoder
Dilation network for Low-dose CT Denoising [5.2227817530931535]
We propose a convolution-free vision transformer-based-decoder Dilation net-work (TED-net) to enrich the family of LDCT denoising algorithms.
Our model is evaluated on the AAPM-Mayo clinic LDCT Grand Challenge dataset, and results show outperformance over the state-of-the-art denoising methods.
arXiv Detail & Related papers (2021-06-08T19:26:55Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Deep Q-Network-Driven Catheter Segmentation in 3D US by Hybrid
Constrained Semi-Supervised Learning and Dual-UNet [74.22397862400177]
We propose a novel catheter segmentation approach, which requests fewer annotations than the supervised learning method.
Our scheme considers a deep Q learning as the pre-localization step, which avoids voxel-level annotation.
With the detected catheter, patch-based Dual-UNet is applied to segment the catheter in 3D volumetric data.
arXiv Detail & Related papers (2020-06-25T21:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.