Temporal-Mapping Photography for Event Cameras
- URL: http://arxiv.org/abs/2403.06443v1
- Date: Mon, 11 Mar 2024 05:29:46 GMT
- Title: Temporal-Mapping Photography for Event Cameras
- Authors: Yuhan Bao, Lei Sun, Yuqin Ma, Kaiwei Wang
- Abstract summary: Event cameras capture brightness changes as a continuous stream of events'' rather than traditional intensity frames.
We realize events to dense intensity image conversion using a stationary event camera in static scenes.
- Score: 5.838762448259289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras, or Dynamic Vision Sensors (DVS) are novel neuromorphic sensors
that capture brightness changes as a continuous stream of ``events'' rather
than traditional intensity frames. Converting sparse events to dense intensity
frames faithfully has long been an ill-posed problem. Previous methods have
primarily focused on converting events to video in dynamic scenes or with a
moving camera. In this paper, for the first time, we realize events to dense
intensity image conversion using a stationary event camera in static scenes.
Different from traditional methods that mainly rely on event integration, the
proposed Event-Based Temporal Mapping Photography (EvTemMap) measures the time
of event emitting for each pixel. Then, the resulting Temporal Matrix is
converted to an intensity frame with a temporal mapping neural network. At the
hardware level, the proposed EvTemMap is implemented by combining a
transmittance adjustment device with a DVS, named Adjustable Transmittance
Dynamic Vision Sensor. Additionally, we collected TemMat dataset under various
conditions including low-light and high dynamic range scenes. The experimental
results showcase the high dynamic range, fine-grained details, and
high-grayscale-resolution of the proposed EvTemMap, as well as the enhanced
performance on downstream computer vision tasks compared to other methods. The
code and TemMat dataset will be made publicly available.
Related papers
- EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting [76.02450110026747]
Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution.
We propose Event-Aided Free-Trajectory 3DGS, which seamlessly integrates the advantages of event cameras into 3DGS.
We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS.
arXiv Detail & Related papers (2024-10-20T13:44:24Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed.
This paper focuses on five event-aided image and video enhancement tasks.
arXiv Detail & Related papers (2023-12-13T15:42:04Z) - Event-based Continuous Color Video Decompression from Single Frames [38.59798259847563]
We present ContinuityCam, a novel approach to generate a continuous video from a single static RGB image, using an event camera.
Our approach combines continuous long-range motion modeling with a feature-plane-based neural integration model, enabling frame prediction at arbitrary times within the events.
arXiv Detail & Related papers (2023-11-30T18:59:23Z) - PL-EVIO: Robust Monocular Event-based Visual Inertial Odometry with
Point and Line Features [3.6355269783970394]
Event cameras are motion-activated sensors that capture pixel-level illumination changes instead of the intensity image with a fixed frame rate.
We propose a robust, high-accurate, and real-time optimization-based monocular event-based visual-inertial odometry (VIO) method.
arXiv Detail & Related papers (2022-09-25T06:14:12Z) - MEFNet: Multi-scale Event Fusion Network for Motion Deblurring [62.60878284671317]
Traditional frame-based cameras inevitably suffer from motion blur due to long exposure times.
As a kind of bio-inspired camera, the event camera records the intensity changes in an asynchronous way with high temporal resolution.
In this paper, we rethink the event-based image deblurring problem and unfold it into an end-to-end two-stage image restoration network.
arXiv Detail & Related papers (2021-11-30T23:18:35Z) - Combining Events and Frames using Recurrent Asynchronous Multimodal
Networks for Monocular Depth Prediction [51.072733683919246]
We introduce Recurrent Asynchronous Multimodal (RAM) networks to handle asynchronous and irregular data from multiple sensors.
Inspired by traditional RNNs, RAM networks maintain a hidden state that is updated asynchronously and can be queried at any time to generate a prediction.
We show an improvement over state-of-the-art methods by up to 30% in terms of mean depth absolute error.
arXiv Detail & Related papers (2021-02-18T13:24:35Z) - Event-based Motion Segmentation with Spatio-Temporal Graph Cuts [51.17064599766138]
We have developed a method to identify independently objects acquired with an event-based camera.
The method performs on par or better than the state of the art without having to predetermine the number of expected moving objects.
arXiv Detail & Related papers (2020-12-16T04:06:02Z) - An Asynchronous Kalman Filter for Hybrid Event Cameras [13.600773150848543]
Event cameras are ideally suited to capture HDR visual information without blur.
conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on high dynamic range or quickly changing scenes.
We present an event-based video reconstruction pipeline for High Dynamic Range scenarios.
arXiv Detail & Related papers (2020-12-10T11:24:07Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.