An Asynchronous Kalman Filter for Hybrid Event Cameras
- URL: http://arxiv.org/abs/2012.05590v2
- Date: Mon, 12 Apr 2021 08:32:43 GMT
- Title: An Asynchronous Kalman Filter for Hybrid Event Cameras
- Authors: Ziwei Wang, Yonhon Ng, Cedric Scheerlinck, Robert Mahony
- Abstract summary: Event cameras are ideally suited to capture HDR visual information without blur.
conventional image sensors measure absolute intensity of slowly changing scenes effectively but do poorly on high dynamic range or quickly changing scenes.
We present an event-based video reconstruction pipeline for High Dynamic Range scenarios.
- Score: 13.600773150848543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event cameras are ideally suited to capture HDR visual information without
blur but perform poorly on static or slowly changing scenes. Conversely,
conventional image sensors measure absolute intensity of slowly changing scenes
effectively but do poorly on high dynamic range or quickly changing scenes. In
this paper, we present an event-based video reconstruction pipeline for High
Dynamic Range (HDR) scenarios. The proposed algorithm includes a frame
augmentation pre-processing step that deblurs and temporally interpolates frame
data using events. The augmented frame and event data are then fused using a
novel asynchronous Kalman filter under a unifying uncertainty model for both
sensors. Our experimental results are evaluated on both publicly available
datasets with challenging lighting conditions and fast motions and our new
dataset with HDR reference. The proposed algorithm outperforms state-of-the-art
methods in both absolute intensity error (48% reduction) and image similarity
indexes (average 11% improvement).
Related papers
- Event-based Asynchronous HDR Imaging by Temporal Incident Light Modulation [54.64335350932855]
We propose a Pixel-Asynchronous HDR imaging system, based on key insights into the challenges in HDR imaging.
Our proposed Asyn system integrates the Dynamic Vision Sensors (DVS) with a set of LCD panels.
The LCD panels modulate the irradiance incident upon the DVS by altering their transparency, thereby triggering the pixel-independent event streams.
arXiv Detail & Related papers (2024-03-14T13:45:09Z) - Temporal-Mapping Photography for Event Cameras [5.838762448259289]
Event cameras capture brightness changes as a continuous stream of events'' rather than traditional intensity frames.
We realize events to dense intensity image conversion using a stationary event camera in static scenes.
arXiv Detail & Related papers (2024-03-11T05:29:46Z) - EventAid: Benchmarking Event-aided Image/Video Enhancement Algorithms
with Real-captured Hybrid Dataset [55.12137324648253]
Event cameras are emerging imaging technology that offers advantages over conventional frame-based imaging sensors in dynamic range and sensing speed.
This paper focuses on five event-aided image and video enhancement tasks.
arXiv Detail & Related papers (2023-12-13T15:42:04Z) - Event-based Continuous Color Video Decompression from Single Frames [38.59798259847563]
We present ContinuityCam, a novel approach to generate a continuous video from a single static RGB image, using an event camera.
Our approach combines continuous long-range motion modeling with a feature-plane-based neural integration model, enabling frame prediction at arbitrary times within the events.
arXiv Detail & Related papers (2023-11-30T18:59:23Z) - An Asynchronous Linear Filter Architecture for Hybrid Event-Frame Cameras [9.69495347826584]
We present an asynchronous linear filter architecture, fusing event and frame camera data, for HDR video reconstruction and spatial convolution.
The proposed AKF pipeline outperforms other state-of-the-art methods in both absolute intensity error (69.4% reduction) and image similarity indexes (average 35.5% improvement)
arXiv Detail & Related papers (2023-09-03T12:37:59Z) - Revisiting Event-based Video Frame Interpolation [49.27404719898305]
Dynamic vision sensors or event cameras provide rich complementary information for video frame.
estimating optical flow from events is arguably more difficult than from RGB information.
We propose a divide-and-conquer strategy in which event-based intermediate frame synthesis happens incrementally in multiple simplified stages.
arXiv Detail & Related papers (2023-07-24T06:51:07Z) - Self-Supervised Scene Dynamic Recovery from Rolling Shutter Images and
Events [63.984927609545856]
Event-based Inter/intra-frame Compensator (E-IC) is proposed to predict the per-pixel dynamic between arbitrary time intervals.
We show that the proposed method achieves state-of-the-art and shows remarkable performance for event-based RS2GS inversion in real-world scenarios.
arXiv Detail & Related papers (2023-04-14T05:30:02Z) - Event-based Image Deblurring with Dynamic Motion Awareness [10.81953574179206]
We introduce the first dataset containing pairs of real RGB blur images and related events during the exposure time.
Our results show better robustness overall when using events, with improvements in PSNR by up to 1.57dB on synthetic data and 1.08 dB on real event data.
arXiv Detail & Related papers (2022-08-24T09:39:55Z) - Globally-Optimal Event Camera Motion Estimation [30.79931004393174]
Event cameras are bio-inspired sensors that perform well in HDR conditions and have high temporal resolution.
Event cameras measure asynchronous pixel-level changes and return them in a highly discretised format.
arXiv Detail & Related papers (2022-03-08T08:24:22Z) - Combining Events and Frames using Recurrent Asynchronous Multimodal
Networks for Monocular Depth Prediction [51.072733683919246]
We introduce Recurrent Asynchronous Multimodal (RAM) networks to handle asynchronous and irregular data from multiple sensors.
Inspired by traditional RNNs, RAM networks maintain a hidden state that is updated asynchronously and can be queried at any time to generate a prediction.
We show an improvement over state-of-the-art methods by up to 30% in terms of mean depth absolute error.
arXiv Detail & Related papers (2021-02-18T13:24:35Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
Event cameras produce brightness changes in the form of a stream of asynchronous events instead of intensity frames.
Recent learning-based approaches have been applied to event-based data, such as monocular depth prediction.
We propose a recurrent architecture to solve this task and show significant improvement over standard feed-forward methods.
arXiv Detail & Related papers (2020-10-16T12:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.