論文の概要: Structure Your Data: Towards Semantic Graph Counterfactuals
- arxiv url: http://arxiv.org/abs/2403.06514v1
- Date: Mon, 11 Mar 2024 08:40:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:53:25.612550
- Title: Structure Your Data: Towards Semantic Graph Counterfactuals
- Title(参考訳): データの構造: セマンティックグラフのカウンターファクトへ
- Authors: Angeliki Dimitriou, Maria Lymperaiou, Giorgos Filandrianos,
Konstantinos Thomas, Giorgos Stamou
- Abstract要約: 概念に基づく対実的説明(CE)は、モデル予測にどの高レベルな意味的特徴が寄与するかを理解するための代替シナリオを考える説明である。
本研究では,入力データに付随する意味グラフに基づくCEを提案する。
- 参考スコア(独自算出の注目度): 1.9939549451457024
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Counterfactual explanations (CEs) based on concepts are explanations that
consider alternative scenarios to understand which high-level semantic features
contributed to particular model predictions. In this work, we propose CEs based
on the semantic graphs accompanying input data to achieve more descriptive,
accurate, and human-aligned explanations. Building upon state-of-the-art (SoTA)
conceptual attempts, we adopt a model-agnostic edit-based approach and
introduce leveraging GNNs for efficient Graph Edit Distance (GED) computation.
With a focus on the visual domain, we represent images as scene graphs and
obtain their GNN embeddings to bypass solving the NP-hard graph similarity
problem for all input pairs, an integral part of the CE computation process. We
apply our method to benchmark and real-world datasets with varying difficulty
and availability of semantic annotations. Testing on diverse classifiers, we
find that our CEs outperform previous SoTA explanation models based on
semantics, including both white and black-box as well as conceptual and
pixel-level approaches. Their superiority is proven quantitatively and
qualitatively, as validated by human subjects, highlighting the significance of
leveraging semantic edges in the presence of intricate relationships. Our
model-agnostic graph-based approach is widely applicable and easily extensible,
producing actionable explanations across different contexts.
- Abstract(参考訳): 概念に基づく対実的説明(CE)は、特定のモデル予測にどの高度な意味的特徴が寄与するかを理解するための代替シナリオを考える説明である。
本研究では,入力データに付随する意味グラフに基づくCEを提案する。
最新技術(SoTA)の概念的試みに基づいて,モデルに依存しない編集アプローチを採用し,グラフ編集距離(GED)の効率的な計算にGNNを活用する。
視覚領域に焦点をあてて、画像をシーングラフとして表現し、そのGNN埋め込みを取得し、全ての入力ペアに対するNP-ハードグラフ類似性問題を回避し、CE計算プロセスの不可欠な部分となる。
提案手法は,セマンティックアノテーションの難易度と可用性の異なる実世界のデータセットのベンチマークに応用する。
多様な分類器を試験したところ、CEは、概念的およびピクセルレベルのアプローチだけでなく、ホワイトボックスとブラックボックスの両方を含むセマンティクスに基づく従来のSoTA説明モデルよりも優れていることがわかった。
彼らの優位性は定量的かつ質的に証明され、人間によって検証され、複雑な関係の存在下で意味的エッジを活用することの重要性を強調している。
モデルに依存しないグラフベースのアプローチは広く適用可能で、容易に拡張できます。
関連論文リスト
- Towards Graph Foundation Models: The Perspective of Zero-shot Reasoning on Knowledge Graphs [14.392577069212292]
我々は、ゼロショット学習を用いて、多様なグラフタスクを効果的に一般化する統合グラフ推論フレームワークSCOREを紹介する。
SCOREを38種類のグラフデータセットを用いて評価し、ノードレベル、リンクレベル、グラフレベルのタスクを複数のドメインでカバーする。
論文 参考訳(メタデータ) (2024-10-16T14:26:08Z) - Decompose the model: Mechanistic interpretability in image models with Generalized Integrated Gradients (GIG) [24.02036048242832]
本稿では,すべての中間層を経由した入力から,データセット全体の最終的な出力まで,経路全体をトレースする新しい手法を提案する。
本稿では,PFV(Pointwise Feature Vectors)とERF(Effective Receptive Fields)を用いて,モデル埋め込みを解釈可能な概念ベクトルに分解する。
そして,汎用統合勾配(GIG)を用いて概念ベクトル間の関係を計算し,モデル行動の包括的,データセットワイドな解析を可能にする。
論文 参考訳(メタデータ) (2024-09-03T05:19:35Z) - Semantic Interpretation and Validation of Graph Attention-based
Explanations for GNN Models [9.260186030255081]
本稿では,グラフニューラルネットワーク(GNN)に基づくモデルの説明可能性を高めるために,意味的注意力を用いた手法を提案する。
本研究は,注意分布のばらつきを意味的にソートした特徴集合と関連づけることで,既存の注意グラフ説明可能性手法を拡張した。
提案手法をライダーポイントクラウド推定モデルに適用し,性能向上に寄与する主要なセマンティッククラスを同定する。
論文 参考訳(メタデータ) (2023-08-08T12:34:32Z) - Contextual Dictionary Lookup for Knowledge Graph Completion [32.493168863565465]
知識グラフ補完(KGC)は、知識グラフの不完全性(KGs)を解決することを目的として、既知の三重項から欠落するリンクを予測する。
既存の埋め込みモデルは、それぞれの関係を一意なベクトルにマッピングし、異なる実体の下でそれらの特定の粒度のセマンティクスを見渡す。
本稿では,従来の埋め込みモデルを用いて,関係の微粒なセマンティクスをエンド・ツー・エンドで学習することのできる,文脈辞書検索を利用した新しい手法を提案する。
論文 参考訳(メタデータ) (2023-06-13T12:13:41Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - GINet: Graph Interaction Network for Scene Parsing [58.394591509215005]
画像領域に対する文脈推論を促進するために,グラフインタラクションユニット(GIユニット)とセマンティックコンテキストロス(SC-loss)を提案する。
提案されたGINetは、Pascal-ContextやCOCO Stuffなど、一般的なベンチマークにおける最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2020-09-14T02:52:45Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。