論文の概要: Data-driven architecture to encode information in the kinematics of
robots and artificial avatars
- arxiv url: http://arxiv.org/abs/2403.06557v1
- Date: Mon, 11 Mar 2024 10:00:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:30:17.740351
- Title: Data-driven architecture to encode information in the kinematics of
robots and artificial avatars
- Title(参考訳): ロボットと人工アバターのキネマティクスにおける情報符号化のためのデータ駆動アーキテクチャ
- Authors: Francesco De Lellis, Marco Coraggio, Nathan C. Foster, Riccardo Villa,
Cristina Becchio, Mario di Bernardo
- Abstract要約: ロボットと人工アバターのキネマティクスを変更するためのデータ駆動制御アーキテクチャを提案する。
我々は、人間の操作者によって駆動されるアバターの動きにおける感情の有無などの特定の情報を符号化する。
- 参考スコア(独自算出の注目度): 0.9728436272434581
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a data-driven control architecture for modifying the kinematics of
robots and artificial avatars to encode specific information such as the
presence or not of an emotion in the movements of an avatar or robot driven by
a human operator. We validate our approach on an experimental dataset obtained
during the reach-to-grasp phase of a pick-and-place task.
- Abstract(参考訳): 本稿では,人間の操作者によって駆動されるアバターやロボットの動きにおける感情の有無などの特定の情報をエンコードするために,ロボットや人工アバターのキネマティックスを変更するデータ駆動制御アーキテクチャを提案する。
我々は,ピック・アンド・プレースタスクのリーチ・ツー・グラップフェーズで得られた実験データセット上でのアプローチを検証する。
関連論文リスト
- Differentiable Robot Rendering [45.23538293501457]
本稿では,ロボット本体の視覚的外観を,その制御パラメータに対して直接微分可能とするロボットレンダリングについて紹介する。
画像からロボットのポーズを復元したり、視覚言語モデルを用いてロボットを制御するなど、その能力と用途を実演する。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - Learning Object Properties Using Robot Proprioception via Differentiable Robot-Object Interaction [52.12746368727368]
微分可能シミュレーションは、システム識別の強力なツールとなっている。
本手法は,オブジェクト自体のデータに頼ることなく,ロボットからの情報を用いてオブジェクト特性を校正する。
低コストなロボットプラットフォームにおける本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-04T20:48:38Z) - Multimodal Anomaly Detection based on Deep Auto-Encoder for Object Slip
Perception of Mobile Manipulation Robots [22.63980025871784]
提案フレームワークは,RGBや深度カメラ,マイク,力トルクセンサなど,さまざまなロボットセンサから収集した異種データストリームを統合する。
統合されたデータは、ディープオートエンコーダを訓練して、通常の状態を示す多感覚データの潜在表現を構築するために使用される。
次に、トレーニングされたエンコーダの潜伏値と再構成された入力データの潜伏値との差によって測定された誤差スコアによって異常を識別することができる。
論文 参考訳(メタデータ) (2024-03-06T09:15:53Z) - Learning to See Physical Properties with Active Sensing Motor Policies [20.851419392513503]
本稿では,観測された地形を入力とし,物理的特性を予測する視覚システム構築の課題を克服する手法を提案する。
本稿では,身体的パラメータを推定する精度を高めるため,運動行動の学習を目的としたアクティブセンシングモータポリシ(ASMP)を紹介する。
訓練されたシステムは頑丈で、地上を歩いている四足歩行ロボットのカメラが収集したデータに基づいて訓練されているにもかかわらず、ドローンが捉えたオーバーヘッド画像でも機能する。
論文 参考訳(メタデータ) (2023-11-02T17:19:18Z) - Action-conditioned Deep Visual Prediction with RoAM, a new Indoor Human
Motion Dataset for Autonomous Robots [1.7778609937758327]
ロボット自律運動(RoAM)ビデオデータセットについて紹介する。
このロボットは、ロボットのエゴビジョンから様々な人間の動きを記録する様々な屋内環境において、カスタムメイドのタートルボット3バーガーロボットで収集される。
データセットには、LiDARスキャンの同期記録や、静的で動く人間のエージェントの周りを移動する際にロボットが取るすべての制御アクションも含まれている。
論文 参考訳(メタデータ) (2023-06-28T00:58:44Z) - Robot Learning with Sensorimotor Pre-training [98.7755895548928]
ロボット工学のための自己教師型感覚運動器事前学習手法を提案する。
我々のモデルはRTTと呼ばれ、センサモレータトークンのシーケンスで動作するトランスフォーマーである。
感覚運動の事前学習は、ゼロからトレーニングを一貫して上回り、優れたスケーリング特性を持ち、さまざまなタスク、環境、ロボット間での移動を可能にしている。
論文 参考訳(メタデータ) (2023-06-16T17:58:10Z) - HabitatDyn Dataset: Dynamic Object Detection to Kinematics Estimation [16.36110033895749]
本稿では,合成RGBビデオ,セマンティックラベル,深度情報,および運動情報を含むデータセットHabitatDynを提案する。
HabitatDynは移動カメラを搭載した移動ロボットの視点で作られ、6種類の移動物体をさまざまな速度で撮影する30のシーンを含んでいる。
論文 参考訳(メタデータ) (2023-04-21T09:57:35Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Where is my hand? Deep hand segmentation for visual self-recognition in
humanoid robots [129.46920552019247]
本稿では、画像からロボットの手を切り離すための畳み込みニューラルネットワーク(CNN)を提案する。
ヒューマノイドロボットVizzyの手のセグメンテーションのために,Mask-RCNNネットワークを微調整した。
論文 参考訳(メタデータ) (2021-02-09T10:34:32Z) - Morphology-Agnostic Visual Robotic Control [76.44045983428701]
MAVRICは、ロボットの形態に関する最小限の知識で機能するアプローチである。
本稿では,視覚誘導型3Dポイントリーチ,軌道追従,ロボットとロボットの模倣について紹介する。
論文 参考訳(メタデータ) (2019-12-31T15:45:10Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。