ContextGPT: Infusing LLMs Knowledge into Neuro-Symbolic Activity
Recognition Models
- URL: http://arxiv.org/abs/2403.06586v1
- Date: Mon, 11 Mar 2024 10:32:23 GMT
- Title: ContextGPT: Infusing LLMs Knowledge into Neuro-Symbolic Activity
Recognition Models
- Authors: Luca Arrotta, Claudio Bettini, Gabriele Civitarese, Michele Fiori
- Abstract summary: We propose ContextGPT: a novel prompt engineering approach to retrieve from common-sense knowledge about human activities.
An evaluation carried out on two public datasets shows how a NeSy model obtained by infusing common-sense knowledge from ContextGPT is effective in data scarcity scenarios.
- Score: 0.3277163122167433
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Context-aware Human Activity Recognition (HAR) is a hot research area in
mobile computing, and the most effective solutions in the literature are based
on supervised deep learning models. However, the actual deployment of these
systems is limited by the scarcity of labeled data that is required for
training. Neuro-Symbolic AI (NeSy) provides an interesting research direction
to mitigate this issue, by infusing common-sense knowledge about human
activities and the contexts in which they can be performed into HAR deep
learning classifiers. Existing NeSy methods for context-aware HAR rely on
knowledge encoded in logic-based models (e.g., ontologies) whose design,
implementation, and maintenance to capture new activities and contexts require
significant human engineering efforts, technical knowledge, and domain
expertise. Recent works show that pre-trained Large Language Models (LLMs)
effectively encode common-sense knowledge about human activities. In this work,
we propose ContextGPT: a novel prompt engineering approach to retrieve from
LLMs common-sense knowledge about the relationship between human activities and
the context in which they are performed. Unlike ontologies, ContextGPT requires
limited human effort and expertise. An extensive evaluation carried out on two
public datasets shows how a NeSy model obtained by infusing common-sense
knowledge from ContextGPT is effective in data scarcity scenarios, leading to
similar (and sometimes better) recognition rates than logic-based approaches
with a fraction of the effort.
Related papers
- Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Combatting Human Trafficking in the Cyberspace: A Natural Language
Processing-Based Methodology to Analyze the Language in Online Advertisements [55.2480439325792]
This project tackles the pressing issue of human trafficking in online C2C marketplaces through advanced Natural Language Processing (NLP) techniques.
We introduce a novel methodology for generating pseudo-labeled datasets with minimal supervision, serving as a rich resource for training state-of-the-art NLP models.
A key contribution is the implementation of an interpretability framework using Integrated Gradients, providing explainable insights crucial for law enforcement.
arXiv Detail & Related papers (2023-11-22T02:45:01Z) - Beyond Factuality: A Comprehensive Evaluation of Large Language Models
as Knowledge Generators [78.63553017938911]
Large language models (LLMs) outperform information retrieval techniques for downstream knowledge-intensive tasks.
However, community concerns abound regarding the factuality and potential implications of using this uncensored knowledge.
We introduce CONNER, designed to evaluate generated knowledge from six important perspectives.
arXiv Detail & Related papers (2023-10-11T08:22:37Z) - Neuro-Symbolic Approaches for Context-Aware Human Activity Recognition [0.7734726150561088]
We propose a novel approach based on a semantic loss function that infuses knowledge constraints in the Human Activity Recognition model during the training phase.
Our results on scripted and in-the-wild datasets show the impact of different semantic loss functions in outperforming a purely data-driven model.
arXiv Detail & Related papers (2023-06-08T09:23:09Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - Knowledge-driven Active Learning [70.37119719069499]
Active learning strategies aim at minimizing the amount of labelled data required to train a Deep Learning model.
Most active strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary.
Here we propose to take into consideration common domain-knowledge and enable non-expert users to train a model with fewer samples.
arXiv Detail & Related papers (2021-10-15T06:11:53Z) - B-HAR: an open-source baseline framework for in depth study of human
activity recognition datasets and workflows [1.7639472693362923]
This paper proposes an open-source framework, named B-HAR, for the definition, standardization, and development of a baseline framework.
It implements the most popular data processing methods for data preparation and the most commonly used machine and deep learning pattern recognition models.
arXiv Detail & Related papers (2021-01-23T12:42:41Z) - A Survey on Extraction of Causal Relations from Natural Language Text [9.317718453037667]
Cause-effect relations appear frequently in text, and curating cause-effect relations from text helps in building causal networks for predictive tasks.
Existing causality extraction techniques include knowledge-based, statistical machine learning(ML)-based, and deep learning-based approaches.
arXiv Detail & Related papers (2021-01-16T10:49:39Z) - Continual Learning for Natural Language Generation in Task-oriented
Dialog Systems [72.92029584113676]
Natural language generation (NLG) is an essential component of task-oriented dialog systems.
We study NLG in a "continual learning" setting to expand its knowledge to new domains or functionalities incrementally.
The major challenge towards this goal is catastrophic forgetting, meaning that a continually trained model tends to forget the knowledge it has learned before.
arXiv Detail & Related papers (2020-10-02T10:32:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.