Knowledge-driven Active Learning
- URL: http://arxiv.org/abs/2110.08265v4
- Date: Fri, 16 Jun 2023 17:31:33 GMT
- Title: Knowledge-driven Active Learning
- Authors: Gabriele Ciravegna, Fr\'ed\'eric Precioso, Alessandro Betti, Kevin
Mottin, Marco Gori
- Abstract summary: Active learning strategies aim at minimizing the amount of labelled data required to train a Deep Learning model.
Most active strategies are based on uncertain sample selection, and even often restricted to samples lying close to the decision boundary.
Here we propose to take into consideration common domain-knowledge and enable non-expert users to train a model with fewer samples.
- Score: 70.37119719069499
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The deployment of Deep Learning (DL) models is still precluded in those
contexts where the amount of supervised data is limited. To answer this issue,
active learning strategies aim at minimizing the amount of labelled data
required to train a DL model. Most active strategies are based on uncertain
sample selection, and even often restricted to samples lying close to the
decision boundary. These techniques are theoretically sound, but an
understanding of the selected samples based on their content is not
straightforward, further driving non-experts to consider DL as a black-box. For
the first time, here we propose to take into consideration common
domain-knowledge and enable non-expert users to train a model with fewer
samples. In our Knowledge-driven Active Learning (KAL) framework, rule-based
knowledge is converted into logic constraints and their violation is checked as
a natural guide for sample selection. We show that even simple relationships
among data and output classes offer a way to spot predictions for which the
model need supervision. We empirically show that KAL (i) outperforms many
active learning strategies, particularly in those contexts where domain
knowledge is rich, (ii) it discovers data distribution lying far from the
initial training data, (iii) it ensures domain experts that the provided
knowledge is acquired by the model, (iv) it is suitable for regression and
object recognition tasks unlike uncertainty-based strategies, and (v) its
computational demand is low.
Related papers
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
We propose a downstream-pretext domain knowledge traceback (DOKT) method that traces the data interactions of downstream knowledge and pre-training guidance.
DOKT consists of a traceback diversity indicator and a domain-based uncertainty estimator.
Experiments conducted on ten datasets show that our model outperforms other state-of-the-art methods.
arXiv Detail & Related papers (2024-07-20T01:34:13Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.
XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.
Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Frugal Reinforcement-based Active Learning [12.18340575383456]
We propose a novel active learning approach for label-efficient training.
The proposed method is iterative and aims at minimizing a constrained objective function that mixes diversity, representativity and uncertainty criteria.
We also introduce a novel weighting mechanism based on reinforcement learning, which adaptively balances these criteria at each training iteration.
arXiv Detail & Related papers (2022-12-09T14:17:45Z) - Reinforced Meta Active Learning [11.913086438671357]
We present an online stream-based meta active learning method which learns on the fly an informativeness measure directly from the data.
The method is based on reinforcement learning and combines episodic policy search and a contextual bandits approach.
We demonstrate on several real datasets that this method learns to select training samples more efficiently than existing state-of-the-art methods.
arXiv Detail & Related papers (2022-03-09T08:36:54Z) - Multicriteria interpretability driven Deep Learning [0.0]
Deep Learning methods are renowned for their performances, yet their lack of interpretability prevents them from high-stakes contexts.
Recent model methods address this problem by providing post-hoc interpretability methods by reverse-engineering the model's inner workings.
We propose a Multicriteria agnostic technique that allows to control the feature effects on the model's outcome by injecting knowledge in the objective function.
arXiv Detail & Related papers (2021-11-28T09:41:13Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) aims to determine the sentiment polarity towards an aspect.
There always exists severe domain shift between the pretraining and downstream ABSA datasets.
We introduce a unified alignment pretraining framework into the vanilla pretrain-finetune pipeline.
arXiv Detail & Related papers (2021-10-26T04:03:45Z) - Just Label What You Need: Fine-Grained Active Selection for Perception
and Prediction through Partially Labeled Scenes [78.23907801786827]
We introduce generalizations that ensure that our approach is both cost-aware and allows for fine-grained selection of examples through partially labeled scenes.
Our experiments on a real-world, large-scale self-driving dataset suggest that fine-grained selection can improve the performance across perception, prediction, and downstream planning tasks.
arXiv Detail & Related papers (2021-04-08T17:57:41Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
Deep predictive models rely on human supervision in the form of labeled training data.
We propose Ask-n-Learn, an active learning approach based on gradient embeddings obtained using the pesudo-labels estimated in each of the algorithm.
arXiv Detail & Related papers (2020-09-30T05:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.