Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data
- URL: http://arxiv.org/abs/2403.06644v1
- Date: Mon, 11 Mar 2024 12:07:13 GMT
- Title: Elephants Never Forget: Testing Language Models for Memorization of
Tabular Data
- Authors: Sebastian Bordt, Harsha Nori, Rich Caruana
- Abstract summary: Large Language Models (LLMs) can be applied to a diverse set of tasks, but the critical issues of data contamination and memorization are often glossed over.
We introduce a variety of different techniques to assess the degrees of contamination, including statistical tests for conditional distribution modeling and four tests that identify memorization.
- Score: 21.912611415307644
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While many have shown how Large Language Models (LLMs) can be applied to a
diverse set of tasks, the critical issues of data contamination and
memorization are often glossed over. In this work, we address this concern for
tabular data. Starting with simple qualitative tests for whether an LLM knows
the names and values of features, we introduce a variety of different
techniques to assess the degrees of contamination, including statistical tests
for conditional distribution modeling and four tests that identify
memorization. Our investigation reveals that LLMs are pre-trained on many
popular tabular datasets. This exposure can lead to invalid performance
evaluation on downstream tasks because the LLMs have, in effect, been fit to
the test set. Interestingly, we also identify a regime where the language model
reproduces important statistics of the data, but fails to reproduce the dataset
verbatim. On these datasets, although seen during training, good performance on
downstream tasks might not be due to overfitting. Our findings underscore the
need for ensuring data integrity in machine learning tasks with LLMs. To
facilitate future research, we release an open-source tool that can perform
various tests for memorization
\url{https://github.com/interpretml/LLM-Tabular-Memorization-Checker}.
Related papers
- On Unsupervised Prompt Learning for Classification with Black-box Language Models [71.60563181678323]
Large language models (LLMs) have achieved impressive success in text-formatted learning problems.
LLMs can label datasets with even better quality than skilled human annotators.
In this paper, we propose unsupervised prompt learning for classification with black-box LLMs.
arXiv Detail & Related papers (2024-10-04T03:39:28Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
We propose a simple and effective data leakage detection method based on the contents of multiple-choice options.
Our method is able to work under black-box conditions without access to model training data or weights.
We evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets.
arXiv Detail & Related papers (2024-09-03T11:09:44Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Large Language Models Memorize Sensor Datasets! Implications on Human Activity Recognition Research [0.23982628363233693]
We investigate whether Large Language Models (LLMs) have had access to standard Human Activity Recognition (HAR) datasets during training.
Most contemporary LLMs are trained on virtually the entire (accessible) internet -- potentially including standard HAR datasets.
For the Daphnet dataset in particular, GPT-4 is able to reproduce blocks of sensor readings.
arXiv Detail & Related papers (2024-06-09T19:38:27Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Elephants Never Forget: Memorization and Learning of Tabular Data in Large Language Models [21.10890310571397]
Large Language Models (LLMs) can be applied to a diverse set of tasks, but the critical issues of data contamination and memorization are often glossed over.
This work introduces a variety of different techniques to assess whether a language model has seen a dataset during training.
We then compare the few-shot learning performance of LLMs on datasets that were seen during training to the performance on datasets released after training.
arXiv Detail & Related papers (2024-04-09T10:58:21Z) - Unleashing the Potential of Large Language Models for Predictive Tabular Tasks in Data Science [17.910306140400046]
This research endeavors to apply Large Language Models (LLMs) towards addressing these predictive tasks.
Our research aims to mitigate this gap by compiling a comprehensive corpus of tables annotated with instructions and executing large-scale training of Llama-2.
arXiv Detail & Related papers (2024-03-29T14:41:21Z) - On Inter-dataset Code Duplication and Data Leakage in Large Language Models [4.148857672591562]
This paper explores the phenomenon of inter-dataset code duplication and its impact on evaluating large language models (LLMs)
Our findings reveal a potential threat to the evaluation of LLMs across multiple SE tasks, stemming from the inter-dataset code duplication phenomenon.
We provide evidence that open-source models could be affected by inter-dataset duplication.
arXiv Detail & Related papers (2024-01-15T19:46:40Z) - Test-Time Self-Adaptive Small Language Models for Question Answering [63.91013329169796]
We show and investigate the capabilities of smaller self-adaptive LMs, only with unlabeled test data.
Our proposed self-adaption strategy demonstrates significant performance improvements on benchmark QA datasets.
arXiv Detail & Related papers (2023-10-20T06:49:32Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
Aligned large language models (LLMs) demonstrate exceptional capabilities in task-solving, following instructions, and ensuring safety.
Existing continual learning benchmarks lack sufficient challenge for leading aligned LLMs.
We introduce TRACE, a novel benchmark designed to evaluate continual learning in LLMs.
arXiv Detail & Related papers (2023-10-10T16:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.