論文の概要: CEAT: Continual Expansion and Absorption Transformer for Non-Exemplar
Class-Incremental Learnin
- arxiv url: http://arxiv.org/abs/2403.06670v1
- Date: Mon, 11 Mar 2024 12:40:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-12 19:15:09.475966
- Title: CEAT: Continual Expansion and Absorption Transformer for Non-Exemplar
Class-Incremental Learnin
- Title(参考訳): CEAT: 初等中等教育用連続拡張吸収変圧器
- Authors: Xinyuan Gao, Songlin Dong, Yuhang He, Xing Wei, Yihong Gong
- Abstract要約: 現実のアプリケーションでは、動的シナリオは、古い知識を忘れずに新しいタスクを継続的に学習する能力を持つ必要がある。
連続膨張吸収変圧器(CEAT)という新しいアーキテクチャを提案する。
このモデルは、凍結した前のパラメータと平行に拡散層を拡張することで、新しい知識を学ぶことができる。
モデルの学習能力を向上させるために,特徴空間における古クラスと新クラスの重複を低減するために,新しいプロトタイプを設計した。
- 参考スコア(独自算出の注目度): 34.59310641291726
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In real-world applications, dynamic scenarios require the models to possess
the capability to learn new tasks continuously without forgetting the old
knowledge. Experience-Replay methods store a subset of the old images for joint
training. In the scenario of more strict privacy protection, storing the old
images becomes infeasible, which leads to a more severe plasticity-stability
dilemma and classifier bias. To meet the above challenges, we propose a new
architecture, named continual expansion and absorption transformer~(CEAT). The
model can learn the novel knowledge by extending the expanded-fusion layers in
parallel with the frozen previous parameters. After the task ends, we
losslessly absorb the extended parameters into the backbone to ensure that the
number of parameters remains constant. To improve the learning ability of the
model, we designed a novel prototype contrastive loss to reduce the overlap
between old and new classes in the feature space. Besides, to address the
classifier bias towards the new classes, we propose a novel approach to
generate the pseudo-features to correct the classifier. We experiment with our
methods on three standard Non-Exemplar Class-Incremental Learning~(NECIL)
benchmarks. Extensive experiments demonstrate that our model gets a significant
improvement compared with the previous works and achieves 5.38%, 5.20%, and
4.92% improvement on CIFAR-100, TinyImageNet, and ImageNet-Subset.
- Abstract(参考訳): 現実のアプリケーションでは、動的シナリオは、古い知識を忘れずに新しいタスクを継続的に学習する能力を持つ必要がある。
Experience-Replayメソッドは、ジョイントトレーニングのために古いイメージのサブセットを格納する。
より厳格なプライバシー保護のシナリオでは、古い画像を保存することは不可能になり、より厳しい可塑性安定ジレンマと分類子バイアスにつながる。
上記の課題を克服するため,我々は連続膨張吸収トランスフォーマ(ceat)という新しいアーキテクチャを提案する。
このモデルは、凍結した前のパラメータと平行に拡散層を拡張することで、新しい知識を学ぶことができる。
タスクが終了すると、拡張されたパラメータをバックボーンに損失なく吸収して、パラメータ数が一定になるようにします。
モデルの学習能力を向上させるために,特徴空間における古クラスと新クラスの重複を低減するために,新しいプロトタイプを設計した。
さらに,新しいクラスに対する分類子バイアスに対処するために,分類子を補正する擬似機能を生成する新しい手法を提案する。
本手法を3つの標準非例クラスインクリメンタルラーニングベンチマーク(necil)を用いて実験した。
広範な実験により,cifar-100,tinyimagenet,imagenet-subsetの5.38%,5.20%,4.92%の改善を達成した。
関連論文リスト
- Efficient Non-Exemplar Class-Incremental Learning with Retrospective Feature Synthesis [21.348252135252412]
現在のNon-Exemplar Class-Incremental Learning (NECIL)メソッドは、クラス毎に1つのプロトタイプを格納することで、忘れを軽減している。
そこで本研究では,より効率的なNECIL手法を提案する。
提案手法は,非経験的クラスインクリメンタル学習の効率を大幅に向上させ,最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2024-11-03T07:19:11Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - Exemplar-Free Class Incremental Learning via Incremental Representation [26.759108983223115]
古い擬似機能を構築することなく, efCIL のためのtextbfsimple Incremental Representation (IR) フレームワークを提案する。
IRはデータセット拡張を利用して、適切な特徴空間をカバーし、単一のL2スペースメンテナンス損失を使用することでモデルを忘れないようにしている。
論文 参考訳(メタデータ) (2024-03-24T16:29:50Z) - Expandable Subspace Ensemble for Pre-Trained Model-Based Class-Incremental Learning [65.57123249246358]
PTMベースのCILのためのExpAndable Subspace Ensemble (EASE)を提案する。
タスク固有のサブスペースを作成することを目的として、新しいタスクごとに異なる軽量アダプタモジュールをトレーニングする。
我々のプロトタイプ補完戦略は、古いクラスのインスタンスを使わずに、古いクラスの新機能を合成します。
論文 参考訳(メタデータ) (2024-03-18T17:58:13Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
分散型特徴再現(LP-DiF)を用いた学習プロンプト(Learning Prompt)という,シンプルで効果的なフレームワークを提案する。
新しいセッションでは,学習可能なプロンプトが古い知識を忘れないようにするため,擬似機能的リプレイ手法を提案する。
新しいセッションに進むと、古いクラスのディストリビューションと現在のセッションのトレーニングイメージを組み合わせて擬似フィーチャーをサンプリングして、プロンプトを最適化する。
論文 参考訳(メタデータ) (2024-01-03T07:59:17Z) - Class Incremental Learning with Pre-trained Vision-Language Models [59.15538370859431]
本稿では、事前学習された視覚言語モデル(例えば、CLIP)を利用して、さらなる適応を可能にするアプローチを提案する。
いくつかの従来のベンチマークの実験は、常に現在の最先端よりも顕著な改善のマージンを示している。
論文 参考訳(メタデータ) (2023-10-31T10:45:03Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
継続学習(CL)は、古いタスクを忘れずに、非定常データストリームで異なるタスク(分類など)を学習することを目的としている。
本稿では,事前学習モデルを用いたCLの簡潔かつ効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2023-07-05T12:49:02Z) - Non-exemplar Class-incremental Learning by Random Auxiliary Classes
Augmentation and Mixed Features [37.51376572211081]
クラス増分学習(クラス増分学習)とは、古いクラスのサンプルを保存することなく、新しいクラスと古いクラスを分類することである。
本稿では,Random Auxiliary Class Augmentation と Mixed Feature を組み合わせたRAMF と呼ばれる実効非経験的手法を提案する。
論文 参考訳(メタデータ) (2023-04-16T06:33:43Z) - FOSTER: Feature Boosting and Compression for Class-Incremental Learning [52.603520403933985]
ディープニューラルネットワークは、新しいカテゴリーを学ぶ際に破滅的な忘れ方に悩まされる。
本稿では,新たなカテゴリを適応的に学習するためのモデルとして,新しい2段階学習パラダイムFOSTERを提案する。
論文 参考訳(メタデータ) (2022-04-10T11:38:33Z) - ZS-IL: Looking Back on Learned ExperiencesFor Zero-Shot Incremental
Learning [9.530976792843495]
データストリームで新しいクラスが発生するたびに過去の体験を提供するオンコール転送セットを提案します。
ZS-ILは、よく知られたデータセット(CIFAR-10、Tiny-ImageNet)において、Task-ILとClass-ILの両方で大幅にパフォーマンスが向上している。
論文 参考訳(メタデータ) (2021-03-22T22:43:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。