Provable Mutual Benefits from Federated Learning in Privacy-Sensitive Domains
- URL: http://arxiv.org/abs/2403.06672v2
- Date: Thu, 07 Nov 2024 13:32:58 GMT
- Title: Provable Mutual Benefits from Federated Learning in Privacy-Sensitive Domains
- Authors: Nikita Tsoy, Anna Mihalkova, Teodora Todorova, Nikola Konstantinov,
- Abstract summary: Cross-silo federated learning allows data owners to train accurate machine learning models by benefiting from each others private datasets.
To incentivize client participation in privacy-sensitive domains, a FL protocol should strike a delicate balance between privacy guarantees and end-model accuracy.
We study the question of when and how a server could design a FL protocol provably beneficial for all participants.
- Score: 3.3748750222488657
- License:
- Abstract: Cross-silo federated learning (FL) allows data owners to train accurate machine learning models by benefiting from each others private datasets. Unfortunately, the model accuracy benefits of collaboration are often undermined by privacy defenses. Therefore, to incentivize client participation in privacy-sensitive domains, a FL protocol should strike a delicate balance between privacy guarantees and end-model accuracy. In this paper, we study the question of when and how a server could design a FL protocol provably beneficial for all participants. First, we provide necessary and sufficient conditions for the existence of mutually beneficial protocols in the context of mean estimation and convex stochastic optimization. We also derive protocols that maximize the total clients' utility, given symmetric privacy preferences. Finally, we design protocols maximizing end-model accuracy and demonstrate their benefits in synthetic experiments.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - FedJETs: Efficient Just-In-Time Personalization with Federated Mixture
of Experts [48.78037006856208]
FedJETs is a novel solution by using a Mixture-of-Experts (MoE) framework within a Federated Learning (FL) setup.
Our method leverages the diversity of the clients to train specialized experts on different subsets of classes, and a gating function to route the input to the most relevant expert(s)
Our approach can improve accuracy up to 18% in state of the art FL settings, while maintaining competitive zero-shot performance.
arXiv Detail & Related papers (2023-06-14T15:47:52Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
We propose a general learning framework for the protection mechanisms that protects privacy via distorting model parameters.
It can achieve personalized utility-privacy trade-off for each model parameter, on each client, at each communication round in federated learning.
arXiv Detail & Related papers (2023-05-24T13:44:02Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - Balancing Privacy and Performance for Private Federated Learning
Algorithms [4.681076651230371]
Federated learning (FL) is a distributed machine learning framework where multiple clients collaborate to train a model without exposing their private data.
FL algorithms frequently employ a differential privacy mechanism that introduces noise into each client's model updates before sharing.
We show that an optimal balance exists between the number of local steps and communication rounds, one that maximizes the convergence performance within a given privacy budget.
arXiv Detail & Related papers (2023-04-11T10:42:11Z) - Byzantine-Robust Federated Learning with Optimal Statistical Rates and
Privacy Guarantees [123.0401978870009]
We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates.
We benchmark against competing protocols and show the empirical superiority of the proposed protocols.
Our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server.
arXiv Detail & Related papers (2022-05-24T04:03:07Z) - Personalization Improves Privacy-Accuracy Tradeoffs in Federated
Optimization [57.98426940386627]
We show that coordinating local learning with private centralized learning yields a generically useful and improved tradeoff between accuracy and privacy.
We illustrate our theoretical results with experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2022-02-10T20:44:44Z) - Renyi Differential Privacy of the Subsampled Shuffle Model in
Distributed Learning [7.197592390105457]
We study privacy in a distributed learning framework, where clients collaboratively build a learning model iteratively through interactions with a server from whom we need privacy.
Motivated by optimization and the federated learning (FL) paradigm, we focus on the case where a small fraction of data samples are randomly sub-sampled in each round.
To obtain even stronger local privacy guarantees, we study this in the shuffle privacy model, where each client randomizes its response using a local differentially private (LDP) mechanism.
arXiv Detail & Related papers (2021-07-19T11:43:24Z) - FLAME: Differentially Private Federated Learning in the Shuffle Model [25.244726600260748]
Federated Learning (FL) is a promising machine learning paradigm that enables the analyzer to train a model without collecting users' raw data.
We propose an FL framework in the shuffle model and a simple protocol (SS-Simple) extended from existing work.
We find that SS-Simple only provides an insufficient privacy amplification effect in FL since the dimension of the model parameter is quite large.
For boosting the utility when the model size is greater than the user population, we propose an advanced protocol (SS-Topk) with gradient sparsification techniques.
arXiv Detail & Related papers (2020-09-17T04:44:27Z) - Federated Learning with Sparsification-Amplified Privacy and Adaptive
Optimization [27.243322019117144]
Federated learning (FL) enables distributed agents to collaboratively learn a centralized model without sharing their raw data with each other.
We propose a new FL framework with sparsification-amplified privacy.
Our approach integrates random sparsification with gradient perturbation on each agent to amplify privacy guarantee.
arXiv Detail & Related papers (2020-08-01T20:22:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.